最新文章专题视频专题问答1问答10问答100问答1000问答2000关键字专题1关键字专题50关键字专题500关键字专题1500TAG最新视频文章推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37视频文章20视频文章30视频文章40视频文章50视频文章60 视频文章70视频文章80视频文章90视频文章100视频文章120视频文章140 视频2关键字专题关键字专题tag2tag3文章专题文章专题2文章索引1文章索引2文章索引3文章索引4文章索引5123456789101112131415文章专题3
当前位置: 首页 - 正文

悬臂梁受力计算表格

来源:动视网 责编:小OO 时间:2025-09-28 20:45:20
文档

悬臂梁受力计算表格

SimpleBeam---(5)ConcentratedLoadAtAnyPoint(BasingonAmericanInstitute1Inputdata:ConcentratedLoad:P=0.85tonSpan:l=5.00cmPoint'slocation:a=0.00cmPoint'slocation:b=5.00cmMomentofinertiafor"Y"axis:Iy=1.14cm4SectionModulusfor"Y"axis:Wy=3.27cm3ShearingArea
推荐度:
导读SimpleBeam---(5)ConcentratedLoadAtAnyPoint(BasingonAmericanInstitute1Inputdata:ConcentratedLoad:P=0.85tonSpan:l=5.00cmPoint'slocation:a=0.00cmPoint'slocation:b=5.00cmMomentofinertiafor"Y"axis:Iy=1.14cm4SectionModulusfor"Y"axis:Wy=3.27cm3ShearingArea
Simpl

e

Beam

--- (5)

Concentrat

ed Load At

Any Point

(Basing on

American Institute

1Input data:

Concentrated Load:P=0.85ton

Span:l= 5.00cm

Point's location:a=0.00cm

Point's location:b= 5.00cm

Moment of inertia for "Y" axis:I y= 1.14cm4

Section Modulus for "Y" axis:W y= 3.27cm3

Shearing Area for "Z"

axis:

A zz=28.00cm2

Modulus of Elasticity of

steel:

E=2141.10t/cm2

Yield Strength of steel:[s]= 2.35t/cm2 2Output data:

1)Reactions:

Reaction for "Z" axis: R =

P=0.85ton

2)Shearing Stress

Check:

Max. Shearing Force for "Z"

axis: F SF = P =0.85ton

Shearing Stress for "Z" axis:

t z = F SF / A zz =0.03

ton /cm2

< 0.4 [s] =0.94

t/cm2 Unity Check: UC = t z / 0.4

[s] ==0.03Okay!

3)Bending Stress Check:

Max. Bending Moment

Force for "Z" axis: M MAX

= P*b = 4.25ton*cm Prepareed by Reagin

Bending Stress for "Z" axis: s b = M MAX / W y =2

< 0.6 [s] = 1.41

t/cm2

Unity Check: UC = s b /

0.6 [s] =Okay!

4)Combined Stress

Check:

Combined Stress for "Z"

axis: s c = ( s2b + 3 * t2 )

1/2 =

2

< 0.6 [s] = 1.41

t/cm2

Unity Check: UC = s c /

0.6 [s] =Okay!

5)Deflection Check:

Max. Deflection for "Z"

axis: d z = P * b2 * ( 3 * l -

b ) / ( 6 * E * I )

< l / 200 =0.03cm

@ x = free end =Okay!

3Conclusion:

So the designed

structure's

stength is enough

for designed

loading!

Prepareed by Reagin

文档

悬臂梁受力计算表格

SimpleBeam---(5)ConcentratedLoadAtAnyPoint(BasingonAmericanInstitute1Inputdata:ConcentratedLoad:P=0.85tonSpan:l=5.00cmPoint'slocation:a=0.00cmPoint'slocation:b=5.00cmMomentofinertiafor"Y"axis:Iy=1.14cm4SectionModulusfor"Y"axis:Wy=3.27cm3ShearingArea
推荐度:
  • 热门焦点

最新推荐

猜你喜欢

热门推荐

专题
Top