一、研究案例的背景:
环境是人类生存和发展的基本条件,是物质文明建设的基础。环境污染和生态破坏,工作和生活环境质量恶化,威胁着人民群众的健康。保护环境,实质就是保护物质生产活动持续稳定、协调发展的物质基础。一粒小小的钮扣电池可污染600立方米水,相当于一个人一生的饮水量;一节干电池可污染12立方米水、一立方米土壤,并造成永久性公害……人们在日常生活中,使用过的废旧干电池,一直没有得到很好的回收利用,造成了浪费,也污染了环境。其实,被废弃的干电池,其锌壳只损耗了一小部分,二氧化锰也只起了一点氧化的作用,碳粉、石墨棒和铜帽还远远没有被消耗。如果能加以回收和利用,就具有很好经济效益和社会效益。
二、研究的目的意义:
了解原电池的反应原理,初步掌握科学研究的基本方法;
了解干电池的基本结构;
明确废物分类回收的意义,增强环保意识。
三、研究的主要内容:
查阅资料,明确干电池的基本反应原理,巩固原电池原理的相关知识。
通过解剖废干电池,了解干电池的结构,并绘制干电池的结构图。
将解剖废干电池得到的废物分类回收提纯,提高实验技能,增强环保意识。
四、研究的步骤:
阅读教材中相关内容,查阅相关文献资料,明确干电池基本反应原理。
根据反应原理和相关资料介绍,结合实物绘制干电池结构原理图。
解剖几个废干电池,验证绘制的结构原理图的正确性,并作适当修改。
根据解剖废干电池得到的废物种类进行分类提纯回收,写出实验报告。
撰写研究心得和废物分类回收利用的重要意义等方面的论文。
五、教学过程
化学电池的原理
化学电源是一种直接把化学能转变为电能的装置,习惯上称作电池。电池由正极、负极、电解质、隔膜和容器五个部分组成,其中最主要的是正极、负极和电解质三个部分。
一般地,电池放电时,负极上总是发生氧化反应,并放出电子;而正极上总是获得电子,发生还原反应。但有些电池的反应,并不都是按氧化还原反应进行,而是以“嵌入—脱嵌”的方式进行。
1.构成原电池的条件
(1)电极材料是由活性物质与导电极板所构成,所谓活性物质是指在电极上可进行氧化还原的物质。两电极材料活性不同,在负极上发生氧化反应;正极上发生还原反应。
(2)电解液:含电解质
(3)构成回路。
2.原电池正负极的确定
将铜锌两种金属放在电解质溶液中,用导线连接,便构成原电池的两极,如图1.由于Cu、Zn两种金属电势高低不同,所以存在着电势差.电子总是从低电势的极流向高电势的极.
电势的高低一般可根据金属的活泼性确定:金属越活泼其电极电势就越低,金属越不活泼其电极电势就越高.由于锌比铜活泼,所以电子总是从锌极流向铜极.
电化学上把电子流出的极定为负极,流入的极定为正极.如图1.所示,锌为负极,铜为正极。电极反应:负极:Zn-2e-→Zn2+
正极:2H+ +2e-→H2
以上介绍了铜——锌原电池,我们也可以利用同样的原理,把其他的氧化还原反应设计成各种不同的电池。在这些电池中,一般都用还原性较强的物质作为负极,负极向外电路提供电子;用氧化性较强的物质作为正极,正极从外电路得到电子;在电池内部,两极之间填充电解液。放电时,负极上的电子通过导线流向用电器,从正极流回电池,形成电流。
图1. 铜锌原电池原理 图2.干电池原理示意图
下面,简单介绍一种比较常见的电池——干电池。手电筒中的干电池一般是普通的锌—锰干电池,它的结构和反应原理如下:
锌—锰电池内的主要反应:
负极(锌筒):Zn-2e-=Zn2+(氧化反应)
正极(碳棒):2MnO2+2NH4++2e-=Mn2O3+2NH3+H20
总反应:Zn+2MnO2+2NH4+=Zn2++Mn2O3+2NH3+H2
干电池的外壳是金属锌,作负极,中心碳棒(石墨)是正极,碳律周围由一层纸质包裹的黑色物质,这是石墨粉和二氧化锰的混合物,纸质和锌壳之间填满了糊状白色电解液,其成分是氯化铵、氯化锌和淀粉糊。干电池放电主要是通过锌筒上失去电子,而被氧化成Zn2+而进入电解质溶液中,电解质溶液中的NH4+获得电子被还原成NH3,从而使灯泡在电子转移的过程中获得电能而发光。
化学电池的种类
化学电池:借助于化学能直接转变为电能的装置。化学电池的主要部分是电解质溶液,和浸在溶液中的正极和负极,使用时将两极用导线接通,就有电流产生,因而获得电能。化学电池放电到一定程度,电能减弱,有的经充电复原又可使用,这样的电池叫蓄电池,如铅蓄电池、银锌电池等;有的不能充电复原,称为原电池,如干电池、燃料电池等。
下面介绍化学电池的种类:
.干电池:普通锌锰干电池的简称,在一般手电筒中使用锌锰干电池,是用锌皮制成的锌筒作负极兼做容器,插一根碳棒作正极,碳棒顶端加一铜帽。在石墨碳棒周围填满二氧化锰和炭黑的混合物,并用离子可以通过的长纤维纸包裹作隔膜,隔膜外是用氯化锌、氯化铵和淀粉等调成糊状作电解质溶液;电池顶端用蜡和火漆封口。在石墨周围填充ZnCl2、NH4Cl和淀粉糊作电解质,还填有MnO2作去极化剂吸收正极放出的H2,防止产生极化现象,即作去极剂,淀粉糊的作用是提高阴、阳离子在两个电极的迁移速率。
电极反应为:负极 -2 e=Zn2+
正极 +2 e=2NH3+H2
2+2MnO2=Mn2O3+H2O
正极产生的NH3又和ZnCl2作用:Zn2++4NH3=[ZnNH34]2+
干电池的总反应式:Zn+2NH4Cl+2MnO2=ZnNH32Cl2+Mn2O3+H2O
或 +4NH4Cl+2MnO2=[ZnNH32]Cl2+ZnCl2+Mn2O3+H2O
正极生成的氨被电解质溶液吸收,生成的氢气被二氧化锰氧化成水。干电池的电压15 V—16 V。在使用中锌皮腐蚀,电压逐渐下降,不能重新充电复原,因而不宜长时间连续使用。这种电池的电量小,在放电过程中容易发生气涨或漏液。而今体积小,性能好的碱性锌—锰干电池是电解液由原来的中性变为离子导电性能更好的碱性,负极也由锌片改为锌粉,反应面积成倍增加,使放电电流大加幅度提高。碱性干电池的容量和放电时间比普通干电池增加几倍。
2.铅蓄电池:铅蓄电池可放电亦可充电,具有双重功能。它是用硬橡胶或透明塑料制成长方形外壳,用含锑5%~8%的铅锑合金铸成格板,在正极格板上附着一层PbO2,负极格板上附着海绵状金属铅,两极均浸在一定浓度的硫酸溶液密度为125—128 g / cm3中,且两极间用微孔橡胶或微孔塑料隔开。放电的电极反应为:
负极:Pb+-2e =PbSO4↓
正极:PbO2+4H+++2e =PbSO4↓+2H2O
铅蓄电池的电压正常情况下保持20 V,当电压下降到185 V时,即当放电进行到硫酸浓度降低,溶液密度达118 g / cm3时即停止放电,而需要将蓄电池进行充电,其电极反应为:
阳极:PbSO4+2H2O-2e =PbO2+4H++
阴极:PbSO4+2e =Pb+
当密度增加至128 g / cm3时,应停止充电。这种电池性能良好,价格低廉,缺点是比较笨重。
蓄电池放电和充电的总反应式:PbO2+Pb+2H2SO4 4↓+2H2O
目前汽车上使用的电池,有很多是铅蓄电池。由于它的电压稳定,使用方便、安全、可靠,又可以循环使用,因此广泛应用于国防、科研、交通、生产和生活中。
.银锌蓄电池
银锌电池是一种高能电池,它质量轻、体积小,是人造卫星、宇宙火箭、空间电视转播站等的电源。目前,有一种类似干电池的充电电池,它实际是一种银锌蓄电池,电解液为KOH溶液。
常见的钮扣电池也是银锌电池,它用不锈钢制成一个由正极壳和负极盖组成的小圆盒,盒内靠正极盒一端充由Ag2O和少量石墨组成的正极活性材料,负极盖一端填充锌汞合金作负极活性材料,电解质溶液为KOH浓溶液,溶液两边用羧甲基纤维素作隔膜,将电极与电解质溶液隔开。
负极:Zn+2OH-2e =ZnOH2
正极:Ag2O+H2O+2e =2Ag+2OH
银锌电池跟铅蓄电池一样,在使用放电一段时间后就要充电,充电过程表示如下:
阳极:2Ag+2OH-2e =Ag2O+H2O
阴极:ZnOH2+2e =Zn+2OH
总反应式:Zn+Ag2O+H2OOH2+2Ag
一粒钮扣电池的电压达159 V,安装在电子表里可使用两年之久。
4.燃料电池:燃料电池是使燃料与氧化剂反应直接产生电流的一种原电池,所以燃料电池也是化学电源。它与其它电池不同,它不是把还原剂、氧化剂物质全部贮存在电池内,而是在工作时,不断地从外界输入,同时把电极反应产物不断排出电池。因此,燃料电池是名符其实地把能源中燃料燃烧反应的化学能直接转化为电能的“能量转换器”。燃料电池的正极和负极都用多孔炭和多孔镍、铂、铁等制成。从负极连续通入氢气、煤气、发生炉煤气、水煤气、甲烷等气体;从正极连续通入氧气或空气。电解液可以用碱如氢氧化钠或氢氧化钾等把两个电极隔开。化学反应的最终产物和燃烧时的产物相同。燃料电池的特点是能量利用率高,设备轻便,减轻污染,能量转换率可达70%以上。
当前广泛应用于空间技术的一种典型燃料电池就是氢氧燃料电池,它是一种高效低污染的新型电池,主要用于航天领域。它的电极材料一般为活化电极,碳电极上嵌有微细分散的铂等金属作催化剂,如铂电极、活性炭电极等,具有很强的催化活性。电解质溶液一般为40%的KOH溶液。
电极反应式为:负极 22H
+2OH-2 e=2H2O
正极 O2+2H2O+4 e=4OH
电池总反应式为:2H2+O2=2H2O
另一种燃料电池是用金属铂片插入KOH溶液作电极,又在两极上分别通甲烷燃料和氧气氧化剂。电极反应式为:
负极:CH4+10OH--8e =+7H2O;
正极:4H2O+2O2+8e =8OH。
电池总反应式为:CH4+2O2+2KOH=K2CO3+3H2O
目前已研制成功的铝—空气燃料电池,它的优点是:体积小、能量大、使用方便、不污染环境、耗能少。这种电池可代替汽油作为汽车的动力,还能用于收音机、照明电源、野营炊具、野外作业工具等。
5.锂电池:锂电池是金属锂作负极,石墨作正极,无机溶剂亚硫酰氯SO2Cl2在炭极上发生还原反应。电解液是由四氯铝化锂LiAlCl4溶解于亚硫酰氯中组成。它的总反应是锂与亚硫酰氯发生反应,生成氯化锂、亚硫酸锂和硫。
+3SO2Cl2=6LiCl+Li2SO3+2S
锂是密度最小的金属,用锂作为电池的负极,跟用相同质量的其它金属作负极相比较,能在较小的体积和质量下能放出较多的电能,放电时电压十分稳定,贮存时间长,能在2163—3441K温度范围内工作,使用寿命大大延长。锂电池是一种高能电池,它具有质量轻、电压高、工作效率高和贮存寿命长的优点,因而已用于电脑、照相机、手表、心脏起博器上,以及作为火箭、导弹等的动力资源。
微型电池:常用于心脏起搏器和火箭的一种微型电池是锂电池。这种电池容量大,电压稳定,能在567℃—711℃温度范围内正常工作。
.海水电池
年,我国首创以铝─空气─海水电池为能源的新型电池,用作海水标志灯已研制成功。 该电池以取之不尽的海水为电解质溶液,靠空气中的氧气使铝不断氧化而产生电流。只要把灯放入海水中数分钟,就会发出耀眼的白光,其能量比干电池高20─50倍。负极材料是铝,正极材料可以用石墨。
电极反应式为:负极反应:Al-3 e=Al3+,
正极反应:2H2O+O2+4 e=4OH。
电池总反应式为:4Al+3O26H2O=4AlOH3
.溴—锌蓄电池
国外新近研制的的基本构造是用碳棒作两极,溴化锌溶液作电解液。
电极反应式为:负极反应:Zn-2e=Zn2+
正极反应:Br2+2e=2Br
电池总反应式为:Zn+Br2=ZnBr2
.特种电池
在电池家族中,不经化学反应却能产生电流的电池也异军突起。如太阳能电池就是利用晶体硅和非晶体硅为材料制成的一种将太阳能转化为电能的装置。这种电池前景广阔,据预测,到21世纪中期,全世界电力总耗量的20%~30%将由太阳能电池提供。
废旧电池的危害
随着经济和科技的发展,电池在我们生活中的扮演着越来越重要的角色,使用量也正迅速增加,几乎渗透到我们生活的每一个角落,然而这些使用后的废旧电池却未能得到妥善的处理,虽然废旧电池的体积和质量都非常小,但它含有多种金属物质,如果处理不当就会污染到水源、土壤、空气等,进而直接或间接危害到人们的健康,影响人们的正常生活。
我们希望通过这次研究性学习,让人们更多的了解废旧电池的危害和回收状况。保护环境人人有责,希望大家能够从身边小事做起,从回收废旧电池做起,希望机关(特别是有关环保这方面的单位)能够增强执法和宣传的力度,希望拥有才学的专家、学者,拥有财力的商家共同来关注废旧电池的回收状况,多研究一些处理方法,变害为利。我们知道,个人的力量也许微不足道,但把我们——全人类每个人的力量联合起来,筑成一道环境的“绿色长城”,便足以托起一种文明,一种可持续发展的文明。
废旧电池简介
电池的组成:干电池、充电电池的组成成分:锌皮(铁皮)、碳棒、汞、硫酸化物、铜帽;蓄电池以铅的化合物为主。举例:1号废旧锌锰电池的组成,重量70克左右,其中碳棒5.2克,锌皮7.0克,锰粉25克,铜帽0.5克,其他32克。
电池的种类:电池主要有一次性电池、二次电池和汽车电池。一次性电池包括纽扣电池、普通锌锰电池和碱电池,一次性电池多含汞。二次电池主要指充电电池,其中含有重金属镉。汽车废电池中含有酸和重金属铅。
电池数量:DC、MP3等数码产品在以超猛的速度发展,而且都在使用着电池,电池的使用量在迅速增加,如果再不付诸行动的话,电池山的现象迟早会发生。
废旧电池的危害
废旧电池的危害性
一粒纽扣电池可污染60万升水,等于一个人一生的饮水量。一节电池烂在地里,能够使一平方米的土地失去利用价值,所以把一节节的废旧电池说成是“污染小”一点也不过分。
我们日常所用的普通干电池,主要有酸性锌锰电池和碱性锌锰电池两类,它们都含有汞、锰、镉、铅、锌等各种金属物质,废旧电池被遗弃后,电池的外壳会慢慢腐蚀,其中的重金属物质会逐渐渗入水体和土壤,造成污染。重金属污染的最大特点是它在自然界是不能降解,只能通过净化作用,将污染消除,同时也由于重金属容易在生物体内积蓄,从而随时间的推移达到一定量之后,产生致畸或致癌变的结果,最终导致生物体死亡,重金属对人体产生危害的另一个途径是通过食物链传递。鱼虾吃了含有重金属的浮游生物后,重金属在鱼虾体内积蓄,人再吃了这样的鱼虾后,重金属就会在人体内积蓄,达到一定程度后也会对人的身体产生严重影响。因而废旧电池的危害主要集中在其中所含的少量的重金属上
金属种类 危害的表现
锰 过量的锰蓄积于体内引起神经性功能障碍,早期表现为综合性功能紊乱。较重者出现两腿发沉,语言单调,表情呆板,感情冷漠,常伴有精神症状。
锌 锌的盐类能使蛋白质沉淀,对皮膜粘膜有刺激作用。当在水中浓度超过10-50毫史/升时有致癌危险,可能引起化学性肺炎。铅:铅主要作用于神经系统、活血系统、消化系统和肝、肾等器官能抑制血红蛋白的合成代谢过程,还能直接作用于成熟红细胞,对婴幼儿影响甚大,它将导致儿童体格发育迟缓,慢性铅中毒可导致儿童的智力低下。
镍 镍粉溶解于血液,参加体内循环,有较强的毒性,能损害中枢神经,引起血管变异,严重者导致癌症。
汞 它在这些重金属污染物中是最值得一提的,这种重金属,对人类的危害,确实不浅,长期以来,我国在生产干电池时,要加入一种有毒的物质——汞或汞的化合物,我国的碱性干电池中的汞的含量达到1-5%,中性干电池为0.025%,全国每年用于生产干电池的汞具有明显的神经毒性,此外对内分泌系统、免疫系统等也有不良影响,1953年,发生在日本九州岛的震惊世界的水俣病事件,给人类敲响了汞污染的警钟。
重金属污染,威胁着人类的健康,人类如果忽视对重金属污染的控制,最终将吞下自酿的苦果,因此,加强废旧电池的回收就日显重要了。
废旧电池危害的其他表现:
目前世界上生活垃圾主要是卫生填埋、焚烧、堆肥和再利用这四种方式,混入生活垃圾的废旧电池在这四个过程中的污染作用体现在:
处理方式危害的表现
填埋 废旧电池的重金属通过渗透作用污染水体和土壤
焚烧 废旧电池在高温下,腐蚀设备,某些重金属在焚烧炉中挥发在飞灰中,造成大气污染;焚烧炉底重金属堆积,给产生的灰渣造成污染。
堆肥 废旧电池的重金属含量较高,造成堆肥的质量下降。
再利用 一般采用反射炉火冶金法,工艺虽然容易掌握但是回收率只有82%,其余的铅以气体和粉尘的形态出现,同时冶炼过程中的二氧化硫会进入空气中,造成二次污染,直接危害操作工人的健康。
废旧电池的回收及利用
由于资源紧张和治理环境的需要,世界各国都对废电池的回收利用予以高度的重视,电池的管理刻不容缓,如何使废电池资源化和无害化已迫在眉睫。
近年来,随着人们环保意识的日益加强,一些大中城市开始回收废电池,在商场、居民区、学校等处设立废电池回收箱,已初见成效,但尚属起步。1999年在清华大学召开的“废电池环境管理研讨会”上呼吁国家应尽快出台相应的法规、以规范管理。国家环保总局曾委托清华大学调查国内废电池的产量、流向及种类,为制定有关作准备。
废电池回收利用技术简介
1.锌锰干电池
①湿法冶金法
该法基于Zn,MnO2可溶于酸的原理,将电池中的Zn,MnO2与酸作用生成可溶性盐进入溶液,溶液经过净化后电解生产金属锌和电解MnO2或生产其它化工产品、化肥等。湿法冶金又分为焙烧—浸出法和直接浸出法。
焙烧—浸出法是将废电池焙烧,使其中的氯化铵、氯化亚汞等挥发成气相并分别在冷凝装置中回收,高价金属氧化物被还原成低价氧化物,焙烧产物用酸浸出,然后从浸出液中用电解法回收金属,焙烧过程中发生的主要反应为:
M+C=M+CO↑
A(s)→A(g)↑
浸出过程发生的主要反应:
M+2H+=M2++H2↑
MO+2H+=M2++H2O
电解时,阴极主要反应:
M2++2e-=M ( M 指金属)
直接浸出法是将废干电池破碎、筛分、洗涤后,直接用酸浸出其中的锌、锰等金属成分,经过滤,滤液净化后,从中提取金属并生产化工产品。
反应式为:
MnO2+4HCl=MnCl2+Cl2↑+2H2O
MnO2+2HCl=MnCl2+H2O
Mn2O3+6HCl=2MnCl2+Cl2↑+3H2O
MnCl2+NaOH=Mn(OH)2+2NaCl
Mn(OH)2+氧化剂→MnO2↓+2HCl
电池中的Zn以ZnO的形式回收,反应式如下:
Zn2++2OH-→ZnO2-→Zn(OH)2(无定型胶体)
→ZnO(结晶体)+H2O
②常压冶金法
该法是在高温下使废电池中的金属及其化合物氧化、还原、分解和挥发以及冷凝的过程。
方法一:在较低的温度下,加热废干电池,先使汞挥发,然后在较高的温度下回收锌和其它重金属。
方法二:先在高温下焙烧,使其中的易挥发金属及其氧化物挥发,残留物作为冶金中间产品或另行处理。
湿法冶金和常压治金处理废电池,在技术上较为成熟,但都具有流程长、污染源多、投资和消耗高、综合效益低的共同缺点。1996年,日本TDK公司对再生工艺作了大胆的改革,变回收单项金属为回收做磁性材料。这种做法简化了分离工序,使成本大大降低,从而大幅度提高了干电池再生利用的效益。近年来,人们又开始尝试研究开发一种新的冶金法——真空冶金法:基于废电池各组分在同一温度下具有不同的蒸气压,在真空中通过蒸发与冷凝,使其分别在不同温度下相互分离从而实现综合利用和回收。由于是在真空中进行,大气没有参与作业,故减小了污染。虽然目前对真空冶金法的研究尚少,且还缺乏相应的经济指标,但它明显克服了湿法冶金法和常压冶金法的一些缺点,因而必将成为一种很有前途的方法。
2.镍镉电池
Ni-Cd电池含有大量的Ni,Cd和Fe,其中Ni是钢铁、电器、有色合金、电镀等方面的重要原料。Cd是电池、颜料和合金等方面用的稀有金属,又是有毒重金属,故日本较早即开展了废镍隔电池再生利用的研究开发,其工艺也有干法和湿法两种。干法主要利用镉及其氧化物蒸气压高的特点,在高温下使镉蒸发而与镍分离。湿法则是将废电池破碎后,一并用硫酸浸出后再用H2S分离出镉。
3.铅蓄电池
铅蓄电池的体积较大而且铅的毒性较强,所以在各类电池中,最早进行回收利用,故其工艺也较为完善并在不断发展中。
在废铅蓄电池的回收技术中,泥渣的处理是关键,废铅蓄电池的泥渣物相主要是
PbSO4,PbO2,PbO,Pb等。其中PbO2是主要成分,它在正极填料和混合填料中所占重量为41%~46%和24%~28%。因此,PbO2还原效果对整个回收技术具有重要的影响,其还原工艺有火法和湿法两种。火法是将PbO2与泥渣中的其它组分
PbSO4,PbO等一同在冶金炉中还原冶炼成Pb。但由于产生SO2和高温Pb尘第二次污染物,且能耗高,利用率低,故将会逐步被淘汰。湿法是在溶液条件下加入还原剂使PbO2还原转化为低价态的铅化合物。已尝试过的还原剂有许多种。其中,以硫酸溶液中FeSO4还原PbO2法较为理想,并具有工业应用价值。
硫酸溶液中FeSO4还原PbO2,还原过程可用下式表示:
PbO2(固)+2FeSO4(液)+2H2SO4(液)=PbSO4(固)
+Fe2(SO4)3(液)+2H2O
此法还原过程稳定,速度快,还可使泥渣中的金属铅完全转化,并有利于PbO2的还原:
Pb(固)+Fe2(SO4)3(液)=PbSO4(固)+2FeSO4(液)
Pb(固)+PbO(固)+2H2SO4(液)=2PbSO4(固)+2H2O
还原剂可利用钢铁酸洗废水配制,以废治废。
Ni-MH电池、新型的锂离子电池随着近年手持电话和电子设备的发展得到了大量的应用。在日本,Ni-MH电池的产量,1992年达1800万只,1993年达7000万只,到2000年已占市场份额的近50%。可以预计,在不久的将来,将会有大量的废Ni-MH电池产生。这些废Ni-MH电池的正、负极材料中含有许多有用金属,如镍、钴、稀土等。因此,回收Ni-MH电池是十分有益的,有关它们的再生利用技术亦在积极开发中。
科技尤其是信息技术的发展,使得世界对电池的需求只会增多而不会减少,随之造成的电池污染和天然能源的消耗也将大大增加。各种回收利用技术虽日臻完善但毕竟治标不治本。因此科学家们提出了发展有利于环境保护与可持续发展的新型绿色环保电池。新型绿色环保电池是指近年来已投入使用或正在研制开发的一类高性能、无污染的电池。目前已经大量使用的金属氢化物镍蓄电池、锂离子蓄电池、正在推广应用的无汞碱性锌锰原电池和可充电电池都属于这一范畴;正在研制开发的聚合物锂或锂离子蓄电池、燃料电池、电化学贮能超级电容器等也可列入这一范畴。
从普莱德发明第一只铅蓄电池以来,化学电池已经有了140年的历史,其家族也日益壮大。但是,大量生产电池而造成的资源消耗和废电池所带来的环境污染也是有目共睹的。早在1992年,巴西召开的世界环境发展大会上通过的21世纪议程中就已明确提出了可持续发展的方针。与地球和谐相处,走保护环境和可持续发展的道路,是工业发展的大势所趋。加强废电池的环境管理:出台相应的法规并不断完善和发展废电池回收技术,扩大回收范围,即使尚力处理的也要有相应的措施,如填埋处理等。回收技术应朝着降低成本、尽量避免二次污染的方向发展。同时走发展新型绿色环保电池之路:发展高能量、无污染的绿色电池,在制造之初就将环境污染和资源消耗控制在最小。从而使生产和再生利用形成一个良性循环,才能真正做到利于民又无害于民、无害于自然。
各个国家处理方法
法国:
一家工厂就从中提取镍和镉,再将镍用于炼钢,镉则重新用于生产电池。 其余的各类废电池一般都运往专门的有毒、有害垃圾填埋场,这种做法不仅花费太大(例如:在德国填埋一吨废电池费用达1700马克),而且还造成浪费,因为其中尚有不少可作原料的有用物质。
瑞士:
有两家专门加工利用旧电池的工厂,巴特列克公司采取的方法是将旧电池磨碎,然后送往炉内加热,这时可提取挥发出的汞,温度更高时锌也蒸发,它同样是贵重金属。铁和锰熔合后成为炼钢所需的锰铁合金。该工厂一年可加工2000吨废电池,可获得780吨锰铁合金,400吨锌合金及3吨汞。另一家工厂则是直接从电池中提取铁元素,并将氧化锰、氧化锌、氧化铜和氧化镍等金属混合物作为金属废料直接出售。
不过,热处理的方法花费较高,瑞士还规定向每位电池购买者收取少量废电池加工专用费。
德国:
德国为加强对废旧电池的管理,实施了废旧电池回收管理新规定。规定要求消费者将使用完的干电池、钮扣电池等各种类型的电池送交商店或废品回收站回收,商店和废品回收站必须无条件接受废旧电池,并转送生产厂家进行回收处理。
据估计,全球每年有320亿节废旧电池被丢弃,仅德国平均每人每年就要消耗10节电池,合计约30000吨,大量丢弃的废旧电池对土壤环境的破坏是严重的。德国环境部门对于新规定能否杜绝乱扔废旧电池的现象,目前还不能肯定,因为在此之前,废品回收站和生产厂家一般只回收含镉、含汞有毒化学成分的电池,而90%的普通锌碳电池和铝镁电池都被作为生活垃圾填埋或焚烧处理。
据德国环境部统计,德国每年回收带有毒性的镍镉电池只有1/3,而2/3的电池被作为生活垃圾处理,每年流入环境的中的汞约8吨、镍400吨、镉400吨。一般来说,要使普通消费者在生活中区分有毒电池或无毒电池并加以处理是困难的,因此新规定要求商店和废品回收站担当起责任。环境部的一个新的思路是对有毒性的镍镉电池和含汞电池实行押金制度,即消费者购买每节电池中含有15马克的押金,当消费者拿旧电池来换时,价格中可以自动扣除押金。 马格德堡近郊区正在兴建一个“湿处理”装置,在这里除铅蓄电池外,各类电池均溶解于硫酸,然后借助离子树脂从溶液中提取各种金属物,用这种方式获得的原料比热处理方法纯净,因此在市场上售价更高,而且电池中包含的各种物质有95%都能提取出来。湿处理可省去分拣环节(因为分拣是手工操作,会增加成本)。马格德堡这套装置年加工能力可达7500吨,其成本虽然比填埋方法略高,但贵重原料不致丢弃,也不会污染环境。
德国阿尔特公司研制的真空热处理法还要便宜,不过这首先需要在废电池中分拣出镍镉电池,废电池在真空中加热,其中汞迅速蒸发,即可将其回收,然后将剩余原料磨碎,用磁体提取金属铁,再从余下粉末中提取镍和锰。这种加工一吨废电池的成本不到1500马克。
来自不同的声音
国家环保总局有关人士认为,废电池不用集中回收,以前有关废电池危害环境的报道缺乏科学依据,在某种程度上对群众造成了误导。
清华大学环境科学与工程系的博士生导师聂永丰教授带领课题组专门对废电池的危害和处理做过研究。他介绍说,近年来关于废旧电池给环境带来危害的报道的确很多,但是遗憾的是,这些报道未向读者或观众说明支持其结论的科研内容,没有向读者介绍其分析推理过程,也没有列举因干电池造成污染的实际案例,只有“污染严重”的结论。
废电池中含有哪些有害物质,这些物质通过什么样的机理释放到环境中,会对环境造成多大程度的损害,国内外有无废干电池引起严重污染的案例,发达国家是怎样解决这个问题的?带着疑问,课题组作了全面深入的调查,得出的结论与一些新闻报道相去甚远,这些报道确有不切合实际和偏激之处。
聂教授介绍说,电池产品可分一次干电池(普通干电池)、二次干电池(可充电电池,主要用于移动电话、计算机)、铅酸蓄电池(主要用于汽车)三大类。用量最大、群众最心,报道最多的是普通干电池。下面所说的电池均指普通干电池。
电池主要含铁、锌、锰等,此外还含有微量的汞,汞是有毒的。有报道笼统地说,电池含有汞、镉、铅、砷等物质,这是不准确的。事实上,群众日常使用的普通干电池生产过程中不需添加镉、铅、砷等物质。
废电池中的汞没有对环境构成威胁 汞的挥发温度低,是一种毒性较大的重金属。很多地方的土壤中也含有微量的汞,在汞矿开采、提炼、含汞产品加工过程中,如密闭措施不够完备,释放到空气中的汞(蒸气)对操作人员的健康影响很大。 电池中虽然含有汞,但由于是添加剂,其含量很少。即便是高汞电池,含汞量一般也在电池重量的千分之一以内。我国电池行业全年的用汞量,大体上与一个汞法聚氯乙烯,或汞法炼金,或高汞铅锌矿采选的企业年排放废水中的含汞量相当。由于电池消费区域大,含汞废电池进入生活垃圾处理系统以后,对环境的影响比前述一个化工企业排放含汞废水所造成的影响要小得多,况且电池使用了不锈钢或碳钢做外包皮,有效地防止了汞的外漏。因而废电池分散丢弃在生活垃圾中,其危害微乎其微,在客观上不可能造成水俣病之类的危害。日本的水俣病是化工企业几十年向一条河流排放大量含汞废水,下游水系中汞逐渐累积造成的。 含汞电池正在被无汞电池代替 ,当然,含汞废电池毕竟对环境有负面影响(哪怕是轻微的)。因此,在1997年底,国家经贸委、中国轻工总会等9部门联合发出《关于电池汞含量的规定》,借鉴发达国家的经验,要求国内电池制造企业逐步降低电池汞含量,2002年国内销售的电池要达到低汞水平,2006年达到无汞水平。从实际进展来看,国内电池制造业基本按照《规定》要求在逐步削减电池汞含量。据中国电池工业协会提供的数据,我国电池年产量为180亿只,出口约100亿只,国内年消费量约80亿只,基本已达到低汞标准(汞含量小于电池重量的0.025%)。其中约有20亿只达到无汞标准(汞含量低于电池重量的0.001%)。 聂教授最后强调,截至目前国内外均无废电池造成严重污染的报道或科研资料,有关废电池污染环境的说法的确缺乏科学根据,对群众造成了误导。
废电池集中回收处理不当会造成污染 如果按某些报道呼吁的那样,在我国建造一个专业的、能够批量处理废电池的工厂,是否可行呢?国家环保总局污控司固体处彭德富工程师介绍说,建设一个废电池回收处理厂,需要投资1000多万元人民币,而且还要每年至少回收4000多吨废旧电池,工厂才能运转起来。而实际上要回收这样大数量的废电池十分困难。以首都北京为例,在大力宣传和鼓励下,3年才回收了200多吨。在环保模范城杭州市,废电池的回收率也只有10%。据了解,目前瑞士和日本已建好的两家可加工利用废旧电池的工厂,现在也因吃不饱经常处于停产状态。这不得不让我们慎重考虑投资建回收厂的问题。彭德富还介绍说,处理这些集中存放废电池的另一个办法是按照危险废弃物的处理方法集中填埋或存放,但是这样处理一吨需要三四千元的费用,又面临着费用无着落的问题。据了解,四川省有一家小企业打着“环保”的旗号,动用小学生在周六周日帮他们把收集的废电池用锤子敲开,回收其中有价值的电池外壳当废铁卖,而将残渣随意抛弃。废电池不会对环境构成威胁,很重要的一点是电池包了不锈钢或碳钢外包皮,有效地防止了汞的外漏。把废电池外面的不锈钢或碳钢外包皮砸开了,里面所含的汞极易渗出,结果电池中的有害物质污染了环境,损害了小学生的身体健康。这是绝对不能允许的,必须严格禁止。
任何一个观点当然都会有反对声和支持声的,这是正常现象,我们不会因为是反对声就一棍子打死,所以我把不同的声音也写了出来,以供参考,防止偏听。但这篇文章毕竟是我写的 我要表达出自己的观点呀,我依然认为废旧电池必须回收、处理和再利用。如果处理不当则会给我们生存的环境带来长久的危害
环保(废电池)具体行动
通过上面论述我们已经深刻认识到废旧电池的危害性,电池还是要用的,而且数量也不可能减少,我们能够做到的就是想尽办法回收利用这些废旧电池,既减少污染,又做到废物资源化。然而真正做到废旧电池的回收利用是有一定困难的,这需要技术资金的投入和公民的关注以及相关的法律的辅助。
想要利用,首先需要将废旧电池回收,我们知道,电池就散布在社会的每一个角落,如果想要把这些零散的电池收集起来,就需要动员全体公民,培养人们自愿回收电池的意识。建立健全系统的废旧电池自愿及强制回收体系.
校园内组织宣传
1.由环保小组成员在课堂上介绍关于回收利用的情况,对学校即将实施的回收废旧电池进行宣传。
2.发动同学参加校内环保小组,利用科外活动时间制作宣传栏,向全校同学宣传少用电池和塑料用品,因为他们很难分解。
在计划确定可行后进行电池回收
1.制作回收电池垃圾箱。选用合适大小的铁皮,制作分类垃圾箱, 并写上宣传标语。
2.每个班一个,定期集中收集。
3.学校政教处进行评比,看看哪一个班级回收率最高,给予适当的表彰和鼓励,激 发同学的回收积极性。
4.开展回收废旧电池兴趣小组,鼓励同学想出新办法回收废旧电池。
废旧电池回收需要我们每一个人的努力,对于回收废旧电池的给上层一些建议:
1.以名义建立接纳及再利用废电池的责任部门,把全部回收的废电池全部接纳过来。然后提炼可利用物质,使之无害化,并负责宣传回收废电池对防止环境污染的重要作用。如果没有接纳回收废电池的专门机构,群众回收废电池的积极性将会受到打击。所以这一部门极为重要。
2.以各单位(如机关、、学校、工厂、商店,大饭店旅馆、街道居民委员会、新建小区物业等)行政系统为中心建立废电池回收网。督促本单位每个成员、居民、业主等,积极回收废电池,由网络负责人(由行政指定责任心强的一人或几人,任此职)回收本单位,本辖区的废电池并将其送到接纳和再利用废电池的责任部门。
3.责成各群众团体(工会、青年团、学生会等)组织,号召各自成员积极参加回收废电池的行动中来。把回收废电池活动纳入各团体组织活动的一项经常内容。
4.由有关单位(市场管理部门)在各小商品市场(特别是外来人口集中的商品市场)组织商贩们把回收废电池的活动开展起来。应把此项任务作为市场管理部门的一项硬任务。
5.农村乡、镇,特别是村委会也应负责农村废电池的回收工作(农村用电池数量也不少),废电池扔在地头对农村水源直接污染更严重(许多地方饮用井水, 因此危害更大)。
6.建立有关回收废电池活动的专门奖惩制度。做得好的予以奖励,差的严惩不怠(废电池毒害太大了,严惩不为过分)。
7.积极向全国人民及国外征集回收旧电池行之有效的新方法,探索回收废旧电池的新途径。保护环境需要每一个人的努力.
六、教学后记:
研究性学习更多地让学生用探究的方式去主动获取知识、应用知识,学习解决问题的方法。相对于学科教育,研究性学习不再局限于对学生纯书本知识的传授,而是要求学生必须自己动手实践,在实践中体验、学会学习和获得信息的能力。如废旧电池回收问题的研究性学习课题,要发现废旧电池的回收存在的问题,再从不同角度和层面分析思考,最后提出处理问题的方式才算完成课题。这就使得课题组成员要从事实地调查、实验分析和资料查阅等工作。
研究性学习需要实验操作,做社会调查,进行问题讨论,以及现场观察、资料阅读、实施研究、撰写报告、论文答辩等。研究性学习所呈现的学习结果是综合和全面的,由于它要求学生从只注重书本知识和间接经验的获得,转移到同时重视通过实践体验来获得直接经验并学以致用;从单纯关注对学科体系的掌握,变为同时重视对信息收集、处理和运用的自主学习能力培养,从而使学校教育从仅仅追求教学的知识目标转向重视学生素质的全面提高及学习方式的转变。
参考文献:
《电池工业》 2000年第1期 《碱性Zn/MnO2电池用锌粉生产工艺研究》
2001年第1期《废弃电池的危害及其回收利用》
2003年第3期《烧结式金属氢化物在MH-Ni电池中的应用》
《中学教学全书》 化学卷 上海教育出版社
《物理化学》 高等教育出版社 第四版
《废电池污染防治技术》环发[2003]163号
部分资料来自网上
附: 废旧电池的回收利用实验报告
实验目的:
1、了解碳和二氧化锰的性质差异;
2、了解废品回收及综合利用的重要意义;
3、学会分混合物的基本方法。
实验用品:小刀、酒精灯、火柴、试管、铁架台、蒸发皿、表面皿、带火星木条;
双氧水、浓、稀盐酸、旧干电池。
实验过程:
实验内容 | 实验现象 | 实验结论 | |
一、将旧电池拆开,按物质初步分类,并了解电池的构造。基本原理图如下: | 拆开的旧电池大致可分为:电池外包装纸;锌筒;铜帽;石墨碳棒;黑色粉末;少量白色糊状物。 | 、、可直接回收; 用盐酸溶解; 、为混合物。 | |
二、电池中锌皮的利用—制取氯化锌: 将废锌皮用水冲洗干净后,放入烧杯中加入稀盐酸,待完全反应后,过滤,将滤液放入蒸发皿中边加热边搅拌。 | 有无色气体放出。 有白色晶体生成。 | 蒸发皿中白色晶体为氯化锌,是一种重要的化工原料。 Zn+2HCl=ZnCl2+H2↑ ZnO+2HCl=ZnCl2+H2O | |
三、电池中二氧化锰的回收及检验: 1、将黑色粉末放入钳锅持续加热 2、将经过处理后的黑色粉末放入试管中加入浓HNO3混合加热至无气体产生 3、将上述生成物用水冲净干燥 4、取少量上述粉末加入双氧水,将产生的气体用试管收集,用带火星的木棒放入试管口 | 钳锅中冒烟; 加热时产生红棕色气体,并有刺激味; 加入上述物质的双氧水分解快,产生大量气体,并且使带火星的木条复燃。 | NH4Cl==NH3+HCl △ NH3+HCl=NH4Cl △= C+O2==CO2 △ 2C+O2==2CO C+4HNO3==CO2+4NO2+2H2O MnO2 经上述反应可将MnO2中混有的碳除去得到纯净的MnO2 2H2O2=====O2↑+2H2O 上述物质能使双氧水加快分解,则为MnO2 | |
四、碳棒和铜帽的回收: 将铜帽砸平,用稀盐酸微热,再将其取出干燥,放入试剂瓶保存。 碳棒清洗干净,晾干后保存。 | 金属经处理后变成光亮的红色 | 铜帽中杂质被HCl除去 |
(1)锌皮的回收:
锌片的溶解及H2的收集 过滤 滤液蒸发
(2)MnO2的回收及检验:
溶解可溶性杂质 过滤 灼烧 检验
《废旧电池的回收利用》研究性学习案例
刘喜令