最新文章专题视频专题问答1问答10问答100问答1000问答2000关键字专题1关键字专题50关键字专题500关键字专题1500TAG最新视频文章推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37视频文章20视频文章30视频文章40视频文章50视频文章60 视频文章70视频文章80视频文章90视频文章100视频文章120视频文章140 视频2关键字专题关键字专题tag2tag3文章专题文章专题2文章索引1文章索引2文章索引3文章索引4文章索引5123456789101112131415文章专题3
当前位置: 首页 - 正文

计算n阶行列式的若干方法举例

来源:动视网 责编:小OO 时间:2025-09-28 12:19:39
文档

计算n阶行列式的若干方法举例

计算n阶行列式的若干方法举例闵兰摘要:《线性代数》是理工科大学学生的一门必修基础数学课程。行列式的计算是线性代数中的难点、重点,特别是n阶行列式的计算,学生在学习过程中,普遍存在很多困难,难于掌握。计算n阶行列式的方法很多,但具体到一个题,要针对其特征,选取适当的方法求解。关键词:n阶行列式计算方法n阶行列式的计算方法很多,除非零元素较少时可利用定义计算(①按照某一列或某一行展开②完全展开式)外,更多的是利用行列式的性质计算,特别要注意观察所求题目的特点,灵活选用方法,值得注意的是,同一个行列
推荐度:
导读计算n阶行列式的若干方法举例闵兰摘要:《线性代数》是理工科大学学生的一门必修基础数学课程。行列式的计算是线性代数中的难点、重点,特别是n阶行列式的计算,学生在学习过程中,普遍存在很多困难,难于掌握。计算n阶行列式的方法很多,但具体到一个题,要针对其特征,选取适当的方法求解。关键词:n阶行列式计算方法n阶行列式的计算方法很多,除非零元素较少时可利用定义计算(①按照某一列或某一行展开②完全展开式)外,更多的是利用行列式的性质计算,特别要注意观察所求题目的特点,灵活选用方法,值得注意的是,同一个行列
计算n阶行列式的若干方法举例

闵  兰

摘  要:《线性代数》是理工科大学学生的一门必修基础数学课程。行列式的计算是线性代数中的难点、重点,特别是n阶行列式的计算,学生在学习过程中,普遍存在很多困难,难于掌握。计算n阶行列式的方法很多,但具体到一个题,要针对其特征,选取适当的方法求解。

关键词:n阶行列式    计算    方法

n阶行列式的计算方法很多,除非零元素较少时可利用定义计算(①按照某一列或某一行展开②完全展开式)外,更多的是利用行列式的性质计算,特别要注意观察所求题目的特点,灵活选用方法,值得注意的是,同一个行列式,有时会有不同的求解方法。下面介绍几种常用的方法,并举例说明。

1.利用行列式定义直接计算

例1  计算行列式

解    Dn中不为零的项用一般形式表示为

.

该项列标排列的逆序数t(n-1 n-2…1n)等于,故

    2.利用行列式的性质计算

例2  一个n阶行列式的元素满足

则称Dn为反对称行列式,证明:奇数阶反对称行列式为零.

    证明:由知,即

故行列式Dn可表示为

由行列式的性质

    当n为奇数时,得Dn =-Dn,因而得Dn = 0.

3.化为三角形行列式

若能把一个行列式经过适当变换化为三角形,其结果为行列式主对角线上元素的乘积。因此化三角形是行列式计算中的一个重要方法。

例3  计算n阶行列式

    解:这个行列式的特点是每行(列)元素的和均相等,根据行列式的性质,把第2,3,…,n列都加到第1列上,行列式不变,得

4.降阶法

降阶法是按某一行(或一列)展开行列式,这样可以降低一阶,更一般地是用拉普拉斯定理,这样可以降低多阶,为了使运算更加简便,往往是先利用列式的性质化简,使行列式中有较多的零出现,然后再展开。

例4  计算n阶行列式

解  将Dn按第1行展开

.

5.逆推公式法

逆推公式法:对n阶行列式Dn找出Dn与Dn-1或Dn与Dn-1, Dn-2之间的一种关系——称为逆推公式(其中Dn, Dn-1, Dn-2等结构相同),再由递推公式求出Dn的方法称为递推公式法。

例5  证明

    证明:将Dn按第1列展开得

    由此得递推公式:,利用此递推公式可得

6.利用范德蒙行列式

例6  计算行列式

解  把第1行的-1倍加到第2行,把新的第2行的-1倍加到第3行,以此类推直到把新的第n-1行的-1倍加到第n行,便得范德蒙行列式

7.加边法(升阶法)

加边法(又称升阶法)是在原行列式中增加一行一列,且保持原行列式不变的方法。

例7  计算n阶行列式

    解:             

(箭形行列式)

                                  

8.数学归纳法

例8  计算n阶行列式

解:用数学归纳法. 当n = 2时

                                 

假设n = k时,有

    则当n = k+1时,把Dk+1按第一列展开,得

由此,对任意的正整数n,有

9.拆开法

把某一行(或列)的元素写成两数和的形式,再利用行列式的性质将原行列式写成两行列式之和,使问题简化以利计算。

例9  计算行列式  

解: 

……

上面介绍了计算n阶行列式的常见方法,计算行列式时,我们应当针对具体问题,把握行列式的特点,灵活选用方法。学习中多练习,多总结,才能更好地掌握行列式的计算。

参考文献

《线性代数》魏贵民等主编  高等教育出版社  2004年8月

《线性代数解题方法》刘金山  吴明芬编著  华南理工大学出版社  2000年6月

《线性代数复习指导》马杰主编  机械工业出版社  2002年3月

作者简介:闵  兰  成都理工大学信息管理学院数学教学部  副教授

文档

计算n阶行列式的若干方法举例

计算n阶行列式的若干方法举例闵兰摘要:《线性代数》是理工科大学学生的一门必修基础数学课程。行列式的计算是线性代数中的难点、重点,特别是n阶行列式的计算,学生在学习过程中,普遍存在很多困难,难于掌握。计算n阶行列式的方法很多,但具体到一个题,要针对其特征,选取适当的方法求解。关键词:n阶行列式计算方法n阶行列式的计算方法很多,除非零元素较少时可利用定义计算(①按照某一列或某一行展开②完全展开式)外,更多的是利用行列式的性质计算,特别要注意观察所求题目的特点,灵活选用方法,值得注意的是,同一个行列
推荐度:
  • 热门焦点

最新推荐

猜你喜欢

热门推荐

专题
Top