最新文章专题视频专题问答1问答10问答100问答1000问答2000关键字专题1关键字专题50关键字专题500关键字专题1500TAG最新视频文章推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37视频文章20视频文章30视频文章40视频文章50视频文章60 视频文章70视频文章80视频文章90视频文章100视频文章120视频文章140 视频2关键字专题关键字专题tag2tag3文章专题文章专题2文章索引1文章索引2文章索引3文章索引4文章索引5123456789101112131415文章专题3
当前位置: 首页 - 正文

医用高分子材料研究进展

来源:动视网 责编:小OO 时间:2025-09-28 12:39:14
文档

医用高分子材料研究进展

医用高分子材料研究进展摘要:现代医学的发展,对材料的性能提出了复杂而严格的要求,金属材料和无机材料难以满足,而合成高分子材料与作为生物体的天然高分子有着极其相似的化学结构,因而可以合成出医用高分子材料。本文主要介绍了医用高分子材料的研究进展。关键词:医用高分子材料高分子化学组织工程材料生物医用纳米材料复合生物材料医用高分子材料指的是在医学上使用的高分子材料,是一门介于现代医学和高分子科学之间的新兴学科。它涉及到物理学、化学、生物化学、病理学、医学、输血学等多种边缘学科。目前,医用高分子材料的应
推荐度:
导读医用高分子材料研究进展摘要:现代医学的发展,对材料的性能提出了复杂而严格的要求,金属材料和无机材料难以满足,而合成高分子材料与作为生物体的天然高分子有着极其相似的化学结构,因而可以合成出医用高分子材料。本文主要介绍了医用高分子材料的研究进展。关键词:医用高分子材料高分子化学组织工程材料生物医用纳米材料复合生物材料医用高分子材料指的是在医学上使用的高分子材料,是一门介于现代医学和高分子科学之间的新兴学科。它涉及到物理学、化学、生物化学、病理学、医学、输血学等多种边缘学科。目前,医用高分子材料的应
医用高分子材料研究进展

摘要:现代医学的发展,对材料的性能提出了复杂而严格的要求,金属材料和无机材料难以满足,而合成高分子材料与作为生物体的天然高分子有着极其相似的化学结构,因而可以合成出医用高分子材料。本文主要介绍了医用高分子材料的研究进展。

关键词:医用高分子材料  高分子化学  组织工程材料  生物医用纳米材料  复合生物材料

医用高分子材料指的是在医学上使用的高分子材料,是一门介于现代医学和高分子科学之间的新兴学科。它涉及到物理学、化学、生物化学、病理学、医学、输血学等多种边缘学科。目前,医用高分子材料的应用已遍及整个医学领域,其用量也持续稳定增长。(《功能高分子材料》P185)

1、医用高分子材料的分类和应用

医用高分子材料的范围很广, 根据高分子材料的降解性可分为二类非降解型高分子材料包括塑料纤维与弹性体类和可降解型高分子材料。其中, 塑料纤维材料包括聚乙烯(PE)、聚丙烯(PP)、聚氯乙烯(PVC)、聚苯乙烯(PS)、聚丙烯酸类、聚丙烯酞胺(PAM)、聚乙烯醇(PVA)和乙烯一乙烯醇共聚物、聚一乙烯基毗咯烷酮(PNVP)、聚乙烯基咄咯(PVP)、聚丙烯睛(PAN)、聚四氟乙烯(PTFE)、聚酰胺(PA)、聚醋纤维、纤维素、聚甲醛、聚乙二醇等。弹性体材料包括硅橡胶、聚氨酯(PU)、胶乳、丁基橡胶、热塑性弹性体(TPE)等。降解型高分子材料主要是指生物可降解医用高分子材料。

    根据材料的应用领域不同,医用高分子材料可分为以下几类:

(1) 与血液接触的高分子材料 是指用来制造人工血管、人工心脏瓣膜、人工心脏血囊、人工肺等的医用材料。要求这种材料与血液相容性好,不凝血,不破坏红细胞,即不产生溶血作用;不改变血液中的蛋白;不破坏血小板。有良好的抗细菌粘附性,并且具有与人体血管相似的弹性和延展性,以及良好的耐疲劳性等。

(2) 组织工程用高分子材料 组织工程中的生物材料主要发挥下列作用: ①提供组织再生的支架或三维结构; ②调节细胞生理功能; ③免疫保护。

(3) 药用高分子材料 必须具备下列条件: ①本身及其分散产物应无毒,不会引起炎症和组织变异反应,无致癌性; ②进入血液系统的药物不会引起血栓;③具有水溶性,能在体内水解为具有药理活性的基团; ④能有效到达病灶处,并积累一定浓度; ⑤口服药剂的高分子残基能通过排泄系统排出体外;对于导入方式进入循环系统的药物,聚合物主链必须易降解,使之有可能排出体外或被人体吸收。

(4) 医药包装用高分子材料 包装药物的高分子材料可分为软、硬两种类型。硬性材料(如:聚酯等) 的特点是强度高,透明性好、尺寸稳定、气密性好,可替代玻璃容器和金属容器。软性材料(如:聚乙烯、聚丙烯等) 可加工成复合薄膜。

(5) 眼科用高分子材料 这类材料的基本要求是: ①具有优良的光学性质,折光率与角膜相接近;②良好的润湿性和透氧性; ③生物惰性,即耐降解且不与接触面发生化学反应; ④有一定的力学强度,易于精加工及抗污渍沉淀等。主要制品有眼镜、人工角膜、人工晶状体等。

(6) 医用粘合剂和缝合线 医用粘合剂应能够:

①在活体能承受的条件下固化,使组织粘合; ②能迅速聚合而没有过量的热和毒副产物产生; ③在创伤愈合时粘合剂可被吸收而不干扰正常的愈合过程。手术用缝合线可分为非吸收型和可吸收型2 大类。

(7) 医疗器械用高分子材料 高分子材料制成的医疗器械有一次性医疗用品(如:注射器、输液器、检查器具、麻醉及手术室用具等) 、尿袋、血袋及矫形材料等。常用材料包括聚丙烯、轻质聚氯乙烯、聚氨酯、硅橡胶、聚乙烯醇、聚酯等。(《功能与智能高分子材料》,P141;《功能高分子材料》,P186)

2、对医用高分子的基本要求

医用高分子材料是一类特殊用途的材料。它们在使用过程中,常需与生物肌体、血液、体液等接触,有些还须长期植入体内。由于医用高分子与人们的健康密切相关,因此对进入临床使用阶段的医用高分子材料具有严格的要求,要求有十分优良的特性。归纳起来,一个具备了以下七个方面性能的材料,可以考虑用作医用材料。

2.1化学隋性,不会因与体液接触而发生反应

    人体环境对高分子材料主要有以下一些影响:

    1)体液引起聚合物的降解、交联和相变化;

    2)体内的自由基引起材料的氧化降解反应;

    3)生物酶引起的聚合物分解反应;

    4)在体液作用下材料中添加剂的溶出;

    5)血液、体液中的类脂质、类固醇及脂肪等物质渗入高分子材料,使材料增塑,强度下降。

但对医用高分子来说,在某些情况下,“老化”并不一定都是贬意的,有时甚至还有积极的意义。如作为医用粘合剂用于组织粘合,或作为医用手术缝合线时,在发挥了相应的效用后,反倒不希望它们有太好的化学稳定性,而是希望它们尽快地被组织所分解、吸收或迅速排出体外。在这种情况下,对材料的附加要求是:在分解过程中,不应产生对人体有害的副产物。

2.2对人体组织不会引起炎症或异物反应

    有些高分子材料本身对人体有害,不能用作医用材料。而有些高分子材料本身对人体组织并无不良影响,但在合成、加工过程中不可避免地会残留一些单体,或使用一些添加剂。当材料植入人体以后,这些单体和添加剂会慢慢从内部迁移到表面,从而对周围组织发生作用,引起炎症或组织畸变,严重的可引起全身性反应。

(3)不会致癌

    根据现代医学理论认为,人体致癌的原因是由于正常细胞发生了变异。当这些变异细胞以极其迅速的速度增长并扩散时,就形成了癌。而引起细胞变异的因素是多方面的,有化学因素、物理因素,也有病毒引起的原因。当医用高分子材料植入人体后,高分子材料本身的性质,如化学组成、交联度、相对分子质量及

其分布、分子链构象、聚集态结构、高分子材料中所含的杂质、残留单体、添加剂都可能与致癌因素有关。但研究表明,在排除了小分子渗出物的影响之外,与其他材料相比,高分子材料本身并没有比其他材料更多的致癌可能性。

(4)具有良好的血液相容性

    当高分子材料用于人工脏器植入人体后,必然要长时间与体内的血液接触。因此,医用高分子对血液的相容性是所有性能中最重要的。

    高分子材料的血液相容性问题是一个十分活跃的研究课题,但至今尚未制得一种能完全抗血栓的高分子材料。这一问题的彻底解决,还有待于各国科学家的共同努力。

(5)长期植入体内不会减小机械强度

    许多人工脏器一旦植入体内,将长期存留,有些甚至伴随人们的一生。因此,要求植入体内的高分子材料在极其复杂的人体环境中,不会很快失去原有的机械强度。

    事实上,在长期的使用过程中,高分子材料受到各种因素的影响,其性能不可能永远保持不变。我们仅希望变化尽可能少一些,或者说寿命尽可能长一些。 

一般来说,化学稳定性好的,不含易降解基团的高分子材料,机械稳定也比较好。如聚酰胺的酰胺基团在酸性和碱性条件下都易降解,因此,用作人体各部件时,均会在短期内损失其机械强度,故一般不适宜选作植入材料。而聚四氟乙烯的化学稳定性较好,其在生物体内的稳定性也较好。(《功能高分子材料》,P187~188)

2、医用高分子材料的前世今生

早在公元前3500年,埃及人就用棉花纤维、马鬃缝合伤口。墨西哥印地安人用木片修补受伤的颅骨。公元前500年的中国和埃及墓葬中发现假牙、假鼻、假耳。进入20世纪,高分子科学迅速发展,新的合成高分子材料不断出现,为医学领域提供了更多的选择余地。1936年发明了有机玻璃后,很快就用于制作假牙和补牙,至今仍在使用。1943年,赛璐珞薄膜开始用于血液透析。

1949年,美国首先发表了医用高分子的展望性论文。在文章中,第一次介绍了利用PMMA作为人的头盖骨、关节和股骨,利用聚酰胺纤维作为手术缝合线的临床应用情况。50年代,有机硅聚合物被用于医学领域,使人工器官的应用范围大大扩大,包括器官替代和整容等许多方面。此后,一大批人工器官在50年代试用于临床。如人工尿道(1950年)、人工血管(1951年)、人工食道(1951年)、人工心脏瓣膜(1952年)、人工心肺(1953年)、人工关节(1954年)、人工肝(1958年)等。

进入60年代,医用高分子材料开始进入一个崭新的发展时期。

60年代以前,医用高分子材料的选用主要是根据特定需求,从已有的材料中筛选出合适的加以应用。由于这些材料不是专门为生物医学目的设计和合成的,在应用中发现了许多问题,如凝血问题、炎症反应、组织病变问题、补体激活与免疫反应问题等。人们由此意识到必须针对医学应用的特殊需要,设计合成专用的医用高分子材料。 美国国立心肺研究所在这方面做了开创性的工作,他们发展了血液相容性高分子材料,以用于与血液接触的人工器官制造,如人工心脏等。从70年代始,高分子科学家和医学家积极开展合作研究,使医用高分子材料快速发展起来。至80年代以来,发达国家的医用高分子材料产业化速度加快,基本

形成了一个崭新的生物材料产业。医用高分于作为一门边缘学科,融和了高分子

化学、高分子物理、生物化学、合成材料工艺学、病理学、药理学、解剖学和临床医学等多方面的知识,还涉及许多工程学问题,如各种医疗器械的设计、制造等。上述学科的相互交融、相互渗透,促使医用高分子材料的品种越来越丰富,性能越来越完善,功能越来越齐全。 

高分子材料虽然不是万能的,不可能指望它解决一切医学问题,但通过分子设计的途径,合成出具有生物医学功能的理想医用高分子材料的前景是十分广阔的。有人预计,在21世纪,医用高分子将进入一个全新的时代。除了大脑之外,人体的所有部位和脏器都可用高分子材料来取代。仿生人也将比想象中更快地来到世上。目前用高分子材料制成的人工器官中,比较成功的有人工血管、人工食道、人工尿道、人工心脏瓣膜、人工关节、人工骨、整形材料等。巳取得重大研究成果,但还需不断完善的有人工肾、人工心脏、人工肺、人工胰脏、人工眼球、人造血液等。另有一些功能较为复杂的器官,如人工肝脏、人工胃、人工子宫等。则正处于大力研究开发之中。 

从应用情况看,人工器官的功能开始从部分取代向完全取代发展,从短时间应用向长时期应用发展,从大型向小型化发展,从体外应用向体内植入发展、人工器官的种类从与生命密切相关的部位向人工感觉器官、人工肢体发展。 

医用高分子材料研发过程中遇到的一个巨大难题是材料的抗血栓问题。当材料用于人工器官植入体内时,必然要与血液接触。由于人体的自然保护性反应将产生排异现象,其中之一即为在材料与肌体接触表面产生凝血,即血栓,结果将造成手术失败,严重的还会引起生命危险。对高分子材料的抗血栓性研制是医用高分子研究中的关键问题,至今尚未完全突破。将是今后医用高分子材料研究中的

首要问题。

3、医用高分子材料的发展及展望

我国医用高分子材料的研究起步较早、发展较快。目前约有50多个单位从事这方面的研究,现有医用高分子材料60多种,制品达400余种,用于医疗的聚甲基丙烯酸甲酯每年达300t。然而,我国医用高分子材料的研究目前仍然处于经验和半经验阶段[5],还没有能够建立在分子设计的基础上。因此,应该以材料的结构与性能关系,材料的化学组成、表面性质和生命体组织的相容性之间的关系为依据来研究开发新材料。医用高分子材料要应用于生物体必须同时要满足生物功能性、生物相容性、化学稳定性和可加工性等严格的要求。生物医用材料的研究和发展方向主要包括以下几方面:

3.1组织工程材料

组织工程是应用生命科学与工程的原理和方法构建一个生物装置,来维护、增进人体细胞和组织的生长,以恢复受损组织或器官的功能。它的主要任务是实现受损组织和器官的修复或再建,延长寿命和提高健康水平。其方法是:将特定组织细胞“种植”于一种生物相容性良好、可被人体逐步降解吸收的生物材料上,形成细胞-生物材料复合物;生物材料为细胞的增长繁殖提供三维空间和营养代谢环境;随着材料的降解和细胞的繁殖,形成新的与自身功能和形态相适应的组织或器官。这种具有生命力的活体组织或器官能对病损组织或器官进行结构、形态和功能的重建,并达到永久替代。

 3.2生物医用纳米材料———药物控释材料及基因治疗载体材料

高分子药物控制释放体系不仅能提高药效,简化给药方式,大大降低药物的毒副作用,而且纳米靶向控制释放体系使药物在预定的部位,按设计的剂量,在需要的时间范围内,以一定的速度在体内缓慢释放,从而达到治疗某种疾病或调节生育的目的一次性注射或口服的高分子疫苗制剂的开发,将克服普通疫苗需多次注射方能奏效的缺点,而深受人们的重视。高分子避孕疫苗的研制又将为人类的生育调节提供一个简便、无毒副作用、十分安全的新方法,并有可能成为未来控制人口增长的重要措施。基因治疗是导入正常基因于特定的细胞(癌细胞)中,对缺损或致病的基因进行修复,或者导入能够表达出具有治疗癌症功能的蛋白质基因,或导入能阻止体内致病基因合成蛋白质的基因片段来组织致病基因发生作用,从而达到治疗的目的。基因疗法的关键是导入基因的载体,只有借助载体,正常基因才能进入细胞核内。目前,高分子纳米材料和脂质体是基因治疗的理想载体,它具有承载容量大、安全性能高的特点。近来新合成的树枝状高分子材料作为基因导入的载体值得关注。(《医用高分子》,P145)

 3.3复合生物材料

作为硬组织修复材料的主体,复合生物材料受到广泛重视,它具有强度高、韧性好的特点,目前已广泛用于临床。通过具有不同性能材料的复合,可以达到“取长补短”的效果,可以有效地解决材料的强度、韧性及生物相容性问题,是生物材料新品种开发的有效手段。提高复合材料界面之间的相容性是复合材料研究的主要课题。根据使用方式不同,研究较多的是合金、碳纤维/高分子材料、无机材料(生物陶瓷、生物活性玻璃)、高分子材料的复合研究。

参考文献

1温变英,化工新型材料(中国期刊网)

2张承焱 张启耀,推进医用高分子材料的产业化(中国期刊网)

3李青山,《功能与智能高分子材料》,国防工业出版社(P140~160)

4焦剑 姚军燕,《功能高分子材料》,化学工业出版社(P185~213)

5汪锡安,《医用高分子》,上海科学技术文献出版社(全本)

 

 

文档

医用高分子材料研究进展

医用高分子材料研究进展摘要:现代医学的发展,对材料的性能提出了复杂而严格的要求,金属材料和无机材料难以满足,而合成高分子材料与作为生物体的天然高分子有着极其相似的化学结构,因而可以合成出医用高分子材料。本文主要介绍了医用高分子材料的研究进展。关键词:医用高分子材料高分子化学组织工程材料生物医用纳米材料复合生物材料医用高分子材料指的是在医学上使用的高分子材料,是一门介于现代医学和高分子科学之间的新兴学科。它涉及到物理学、化学、生物化学、病理学、医学、输血学等多种边缘学科。目前,医用高分子材料的应
推荐度:
  • 热门焦点

最新推荐

猜你喜欢

热门推荐

专题
Top