有关贝格曼定律的各种解释
在解释现生恒温动物体型的地理变异时,贝格曼定律有另一种表述形式:“在同种动物中,生活在较冷气候中的种群其体型比生活在较暖气候中的种群大”。对这一原则的一般解释为:大型动物由于具有小的体表面积与体积之比,在体温调节中比小型动物消耗的能量少,因此,生活在寒冷气候中的大型动物比小型动物更经济。再进一步扩展就成了体重增大是对寒冷环境的适应。
阿伦定律是生态学的一条定律,具体内容是:生活在寒冷地区的恒温动物,同种的个体或近缘的异种之间,其耳、吻、首、肢、翼和尾等.突出的部分显有缩短的倾向。这是由于减少体表面积,有利于防止体温发散,说明动物为了保持体温而具有的一种适应性。如图所示的两种狐狸(请注意它们的耳朵,白色为北极狐,棕色为非洲狐)。而生活在热带地区的恒温动物,其体表的突出部分相对较长,有利于热量散失。
李比希定律:由德国化学家李比希(Liebing)提出的,他在研究谷物产量时发现,植物生长不是受需要量大的营养物质影响,而是受那些处于最低量的营养物质成分影响,如微量元素等,后来人们把这种为利比希最小值定律。
谢尔福德定律:耐受性定律亦称为谢尔福德耐性定律(Shelford’s law of tolerance)是美国生态学家V.E. Shelford 于1913年提出的。生物对其生存环境的适应有一个生态学最小量和最大量的界限,生物只有处于这两个限度范围之间生物才能生存,这个最小到最大的限度称为生物的耐受性范围。生物对环境的适应存在耐性限度的法则称为耐受性定律。具体可定义为:任何一种环境因子对每一种生物都有一个耐受性范围,范围有最大限度和最小限度,一种生物的机能在最适点或接近最适点时发生作用,趋向这两端时就减弱,然后被抑制。这就是耐受性定律。
种群的绝对密度(absolute density)即单位面积或空间上的个体数目,往往找种群的相对密度(relative density,即表示动物数量多少的相对指标)来替代。
(一).绝对密度测定
1.总量调查(total count):计数某地段中全部生活的某种动物的数量。如用航空摄影调查某块草原上的全部黄羊。
2.取样调查(sampling methods):在一般情况下,总数量调查比较困难,研究者只计数种群的一小部分,用以估计种群整体,这称为取样调查法。有三类:
(1).样方法(use of quadrats):再若干样方中计数全部个体,然后将其平均数推广,来估计种群整体。
(2).标记重捕法(mark-recapture methods):在调查地段中,捕获一部分个体进行标志,然后放回,经一定期限后进行重捕。根据重捕中标记数的比例,估计该地段中个体的总数。
(3).去处取样法(removal sampling):去处取样法的原理是,在一个封闭的种群里,随着连续的捕捉,种群数量逐渐减少,因而同样的捕捉力量所取得的收益棗捕获数棗就逐渐地降低。同时,随着连续的捕捉累积数就逐渐增大。因此,如果将逐次捕捉数/单位努力(作为Y-轴),对着捕获累积数(作为X-轴)作图,就可以得到一个回归线。不难想象,当单位努力的捕捉数等于零时,捕获累积数就是种群数量的估计数;通过延长回归线,到达与X-轴相交的截距,截距所表示的值就是种群数量N的估计值。
(二).相对密度测定
相对密度测定的不是单位空间中动物密度的绝对值,而只是表示种群数量多少的丰盛度指数(indices of abundance).这类方法有:
1.捕捉(trapping):散放于地面的捕鼠夹、诱捕飞行昆虫的黑光、捕捉地面动物的陷阱、搜集浮游生物的生物网等,只要能加以合理的定量,就可以作为相对密度指标。
相对密度指标分两类,一类是指直接数量指标,另一类是间接数量指标。以生物本身为测量对象的,所得数量指标为前一类;而以动物的粪便、洞穴、鸣叫、毛皮收购量等来表示丰盛度的统计结果则属于间接数量指标。以下的测定方法属于间接数量指标。
2.粪堆计数(pellet count):常用于调查兔、鹿等中、大型狩猎动物,其方法包括计数样方或线路上的粪堆数目。
3.鸣叫计数(call count):主要适用于鸟类。
4.毛皮收购记录(pelt records):有的长期记录超过100年,这对了解长时间的种群数量变动很有用处。
5.单位渔捞的鱼数或生物量(catch per unit fishing effort):在鱼类数量统计和预测预报模型中被广泛应用。
6.计数动物活动所遗留的痕迹,如土丘、洞穴、足迹、巢穴等。
生态位
定义
生态位(ecological niche)是指一个种群在自然生态系统中,在时间空间上所占据的位置及其与相关种群之间的功能关系与作用。
词义演变
1910年,美国学者R.H.约翰逊第一次在生态学论述中使用生态位一词。1917年,J.格林内尔的《加州鸫的生态位关系》一文使该名词流传开来,但他当时所注意的是物种区系,所以侧重从生物分布的角度解释生态位概念,后人称之为空间生态位。1927年,C.埃尔顿著《动物生态学》一书,首次把生态位概念的重点转到生物群落上来。他认为:“一个动物的生态位是指它在生物环境中的地位,指它与食物和天敌的关系。”所以,埃尔顿强调的是功能生态位。
1957年,G.E.哈钦森建议用数学语言、用抽象空间来描绘生态位。例如,一个物种只能在一定的温度、湿度范围内生活,摄取食物的大小也常有一定限度,如果把温度、湿度和食物大小3个因子作为参数,这个物种的生态位就可以描绘在一个三维空间内;如果再添加其他生态因子,就得增加坐标轴,改三维空间为空间,所划定的体就可以看作生态位的抽象描绘,他称之为基本生态位。但在自然界中,因为各物种相互竞争,每一物种只能占据基本生态位的一部分,他称这部分为实际生态位。
后来R.H.惠特克等人建议:在生态位体的每一点上,还可累加一个表示物种反应的数量,如种群密度、资源利用情况等。于是,可以想象在体空间内弥漫着一片云雾,其各点的浓淡表示累加的数量,这样就进一步描绘了体内各点的情况。此外再增加一个时间轴,还可以把瞬时生态位转变为连续生态位,使不同时间内采用相同资源的两物种,在同一空间中各占不同的体;如果进一步把竞争的其他物种都纳入空间坐标系统,所得结果便相当于哈钦森的实际生态位。
生态位(Ecological niche),又称小生境或是生态龛位,生态位是一个物种所处的环境以及其本身生活习性的总称。每个物种都有自己独特的生态位,借以跟其他物种作出区别。生态位包括该物种觅食的地点,食物的种类和大小,还有其每日的和季节性的生物节律。
群落生境
群落生境(其同义词为栖息地)只是生态位这个概念的一部分。生态位的含义远不止是“生活空间”(温度,空气湿度等环境因素的综合,它是生物生存的依据)的一个抽象概念,它描述了一个物种在其群落生境中的功能作用,而且它带有构成群落生境的自然因素所留下的烙印。它是一个物种为求生存而所需的广义“资源”。例如:蝙蝠需要在某地夜间捕食蚊子。这里面某地的自然因素(例如空气质量,其他关系到蝙蝠栖息地的因素),蝙蝠夜间运动的可行性,蚊子都是蝙蝠的生态位的一部分。一个物种只能占有一个生态位。
生态位的环境因素
生态位的环境因素(温度,食物,地表湿度,生存环境等)的综合,构成概念生态位空间。这是一种n维超体积,但出于可视化的原因会将它简化为二维或三维龛位图进行显示。每种环境因素成为一个维度。在两个生态龛位中,考虑观察的维度越多,两个生态龛位的差别就越明显,越容易被区分开来。
生态位的两个层次
基本生态位:是生态位空间的一部分,一个物种有在其中生存的可能。这个基本生态位是由物种的变异和适应能力决定的,而并非其地理因素。或者说基本生态位是实验室条件下的生态位,里面不存在捕食者和竞争。
现实生态位:是基本生态位的一部分,但考虑到生物因素和它们之间的相互作用。或者说是自然界中真实存在的生态位。
人们可以从特殊的性质或角度考虑,定义更多的生态位:
营养生态位: 根据营养情况划分的生态位。
最小环境: 对一个物种来说可持续生存的最小环境。
生态位重合
两个地区,虽然地理上被分隔,但却有着相似的非生物因素,在这两个地区生活的物种会占有相似的生态位。这会导致趋同演化的发生,即是两个物种虽然无亲缘关系,但却各自的发展出相似的身体构造去适应环境。南极的捕鱼能手,不会飞的鸟--企鹅和已灭绝的欧洲的大海雀一样占有相似的生态位。澳洲的袋鼹和欧洲的田鼠都有挖土铲的前肢,它们在泥土中挖掘通道,捕食细小的动物,它们占有相似的细小地下肉食性动物生态位。
生态平衡时,各个生物的生态位原则上不重合。若有重合,那么必然是不稳定的,它必然会通过物种间的竞争来削减生态位的重叠,直到平衡为止。竞争,比如需要相似生态位的入侵物种的进入,会导土著物种存在区域减少。如果存在区域太小,会导致一个物种的灭绝。这就是这就是竞争排除原则。
进化导致的是两个有亲缘关系的物种去占据不同的生态位,减少竞争的机会。一个很好的例子是拉帕戈斯群岛的达尔文雀的进化,(适应辐射)。
生态位的数量
生态位的数量与生态系统的气候,地理和生物因素有关。相应的物种数会因这些因素的差异导致有很大的不同。极地,例如格陵兰的冰川,南极洲或是高原的生态位数就不及热带的原始森林或是珊瑚礁的多。
每一种生物占有各自的空间,在群落中具有各自的功能和营养位置,以及在温度、湿度、土壤等环境变化梯度中所居的地位。一个种的生态位,是按其食物和生境来确定的。如海星(pisaster ochraceus)在北美洲太平洋沿岸居于主要捕食者的龛位。按竞争排斥原理,任何两个种一般不能处于同一生态龛。在特定生态环境中赢得竞争的胜利者,是能够最有效地利用食物资源和生存空间的种,其种群以出生率高、死亡率低而有较快的增长。有着相似食物或空间要求的数群近缘种,因处不同生态位,彼此并不竞争。麦克阿瑟(R.H. MacArthur)的研究发现,北美洲东北部有5种鸣禽在针叶林里一起生活,都属于林莺属(Den-droica),均以昆虫为食,对营巢地点也有相似要求,但每一种鸣禽在取食和营巢行为上显示了复杂的差别和各自占据的生态位,至少在食物丰富时防止了竞争。
两个拥有相似功能生态位、但分布于不同地理区域的生物,在一定程度上可称为生态等值生物。目前,生态位的概念已在多方面使用,最常见的是与资源利用谱(resources utilization spectra)概念等同,所谓“生态位宽度”(niche breath)是指被一个生物所利用的各种不同资源的总和。在没有任何竞争或其它敌害情况下,被利用的整组资源称为“原始”生态位(fundamnental niche)。因种间竞争,一种生物不可能利用其全部原始生态位,所占据的只是现实生态位(realizedniche)。生态位概念应用于植物尚有一定困难。几乎一切植物都需要阳光进行光合作用,而且在陆地上倾向于占有环境的相同部分——土壤表面上下一定高度和深度。然而,植物种在自然环境水平地带和垂直地带中占据的区域以及在生长季节、开花季节等方面出现的差异,可与动物的生态位相比拟
有效积温
每种花卉都有其生长的下限温度。当温度高于下限温度时,它才能生长发育。这个对花卉生长发育起有效作用的高出的温度值,称作有效积温。花卉在整个生育期内的有效温度总和。
每一种生物都需要温度达到一定值时才能够开始发育和生长,这个温度在生态学中称为发育阈温度或生态学零度,但仅仅温度达到所需还不足以完成发育和生长,因为还需要一定的时间,即需要一定的总热量,称为总积温或者有效积温。这就是有效积温法则,它的表达式为:
K = N(T - C)
K:生物完成某阶段发育所需要的总热量,用“日度”表示
N:发育历期,即完成某阶段发育所需要的天数
T:发育期间的平均温度
C:该生物的发育阈温度
长日照植物和短日照植物 根据植物开花过程对日照长度反应的不同划分。
长日照植物 只有当日照长度超过临界日长(14~17小时),或者说暗期必须短于某一时数才能形成花芽的植物。否则不能形成花芽,只停留在营养生长阶段。长日照植物有冬小麦、大麦、油菜、萝卜等,纬度超过60°的地区,多数植物是长日照植物。
短日照植物 只有当日照长度短于其临界日长(少于12小时,但不少于8小时)时才能开花的植物。在一定范围内,暗期越长,开花越早,如果在长日照下则只进行营养生长而不能开花。许多热带、亚热带和温带春秋季开花的植物多属短日照植物,如大豆、玉米、水稻、紫花地丁(Viola chinensis)等。
分布和特点 植物开花要求一定的日照长度,这种特性与其原产地在生长季节里自然日照的长度有密切的关系,也是植物在系统发育过程中对于所处的生态环境长期适应的结果。短日照植物起源于低纬度地区(夏半年昼夜相差不大,但白昼比高纬度地区短),长日照植物则起源于高纬度地区(夏半年昼长夜短)。在临近赤道的地带,长日照植物一般不能开花结实,只有短日照植物分布;在高纬地带(纬度66.5°以上),夏季几乎24小时都有日照,短日照植物不能生长发育,只有长日照植物分布;而在中纬度地带,兼有长日照和短日照条件,所以长日照植物和短日照植物都能生存,但长日照植物多在春末夏初开花,短日照植物多在秋季开花。
植物生态地理群可分为以下几类:
广温植物和狭温植物 根据植物在生长发育的过程中需要的温度量和一定的温度变幅划分。
广温植物 能在较宽的温度范围内生活。这类植物在活动状态下维持生命的温度范围通常在-5~55℃之间;但是只在大约 5~40℃之间才有繁殖能力。它们分布范围广,是广布种。
狭温植物 只能生活在很窄的特定温度范围内,不能适应温度较大幅度变动的植物。这类植物对温度要求严格,分布范围狭窄,是狭布种。水生植物中有许多狭温种。陆生植物中的雪球藻(Sphaerella nivalis)和雪衣藻(Chlamуdomonas nivalis)等只能在冰点温度范围内发育繁殖,不能适应高温,称为低温狭温植物。只能在高温环境生长发育的一些种类,如温泉中的某些蓝藻和热带高温地区的椰子(Cocos nucifera)、巴西橡胶(Hevea brasiliensis)等,不能适应低温,称为高温狭温植物。
旱生植物、中生植物、湿生植物和水生植物 根据环境中水量的多少与植物对水分的依赖程度划分。
旱生植物 能忍受长期干旱而维持水分平衡的高度抗旱性植物。在草原和荒漠地区,旱生植物的种类特别丰富。根据旱生植物的形态-生理特征和抗旱方式(可以进一步区分为肉质旱生植物和硬叶旱生植物。
肉质旱生植物具有发育很好的贮藏水分的薄壁组织,成为肉质、多汁的植物。这类植物依靠体内贮藏的水分度过干旱季节。例如北美洲沙漠的仙人掌树 (Opuntia),高达 15~20米,可储水2吨以上;南美洲中部的瓶子树(Brachуchiton),树干粗达5米,能储存大量水分。根据贮水组织在植物体的部位,肉质旱生植物又分为肉茎旱生植物和肉叶旱生植物。肉质旱生植物虽具有很强的抗旱能力,但生长缓慢,生产量很低。
硬叶旱生植物是最典型的一类旱生植物,体内没有贮水组织,水分丧失50%时仍不会死亡。它们在形态上具有一系列耐旱的特征:①叶面积强烈缩小,有些植物的叶子变成膜质或鳞片状,以当年的幼嫩枝条行使光合作用,如梭梭(Haloxуlon ammodendron)、沙拐枣(Calligonum mongolicum);②有些植物的叶子卷曲成筒,气孔深陷,并位于卷曲叶的内表面,从而减少蒸腾,如针茅属(Stipa);③有些植物的叶子表面具发达的角质层和茸毛,如驼绒藜(Ceratoides latens);④有些植物则具有发达的根系,增加吸水量以维持水分平衡,如生长在中国沙漠地区的疏叶骆驼刺(Alhagi sparsifolia),地上部分只有30~80厘米,地下部分深达10米以上。
中生植物 生长在中等湿度地方的植物,在干旱环境或水中和过湿的土壤中均不能生长,形态解剖和生理特征界于旱生植物和湿生植物之间。中生植物的种类最多,分布最广,数量最大,通常所见的森林和草甸植物都属于这一类,绝大多数的栽培植物(作物、牧草、蔬菜、果树)也是中生植物。此外,分布在干旱荒漠地区的短命植物和类短命植物,其生活期非常短促,在春季或秋季降雨时能迅速地完成生活史,干旱期到来时,以种子或鳞茎、块茎、根茎等地下器官度过旱季,所以在形态和生理上也是中生植物。
湿生植物 在潮湿环境中生长,不能忍受较长时间的水分不足,抗旱能力最小的陆生植物。其最主要的特点是争取水分和防止蒸发的机能不发达;叶子大而薄,光滑,角质层很薄;根系不发育,位于土壤表层。例如热带雨林植被中各种附生蕨类植物和附生兰科植物,以及海芋(Alocasia macrorrhiza)、分布于各地水边潮湿处的多种苔草(Carex)、半边莲(Lobelia radicans)、灯心草(Juncus bufornius)等。
水生植物 生长在水中的植物,地上部分或多或少沉没于水中。无论深水、浅水、淡水、咸水,凡光线能透到的明亮水层,均有水生植物的生长。由于水体中光照弱,氧的含量很低,植物的通气组织十分发达,根系发育微弱。根据植物体完全沉没在水中,漂浮在水面上,和仅下部浸于水中、上部露出在空气中,又可分为沉水水生植物、浮水水生植物和挺水水生植物。
喜钙植物和嫌钙植物 根据植物同土壤中钙盐的关系划分。
喜钙植物 适生于含钙丰富的钙质土或石灰性土壤上的植物,在酸性土壤上不能生长,成为含钙丰富的土壤的指示植物,如圆叶乌桕(Sapium rotundifolium)、柏木(Cupressus funebriis)等。在中国长江流域,分布有只见于右灰岩山丘的铜线树(Paliurus hemsleуanus)、鸡仔木(Adina racemosa)和榆科树种,与其他树种一起组成石灰岩山地常绿、落叶阔叶混交林。
嫌钙植物 只能在缺钙的酸性土壤上生长的植物。典型的如马尾松(Pinus massoniana)、芒萁(Dicranop-teris dichotoma)、石松(Lуcopodium clavatum)等,可作为酸性土壤的指示植物。
虫媒植物和风媒植物 依赖昆虫传粉的被子植物称为虫媒植物。传粉的昆虫中,蜜蜂最为重要,其次还有蝶、蛾、蝇和其他昆虫。虫媒植物的花具蜜腺,花粉粗糙,花药开裂时花粉粘在花药上,昆虫采蜜时,将花雄蕊上的花粉沾到身上,待飞到另一些花上时,身上的花粉擦到雌蕊的柱头面上,完成授粉过程。虫媒植物的花,大都具有吸引和适合昆虫传粉的特点,如颜色鲜艳、分泌特殊气味、花丝短而直立、花粉上有花纹而粘滞等,显然是自然选择下长期进化的结果,使一些植物缺乏某种昆虫就不能生存。因此,这些植物的地理分布,往往决定于某些昆虫的分布螟,例如乌头属(Aconitum)和丸花蜂(Bombus)的分布区是吻合的。地球上虫媒植物分布得非常广泛,大约占有花植物总数的91%。虫媒植物的分布,一般是山区少于平原。海拔越高,非专性的虫媒植物越多,而专性虫媒植物越少。在热带森林,多数乔木都属虫媒植物,而高纬度地区森林中只有少数乔木为虫媒植物。
风媒植物是借助于风力的帮助进行授粉的植物。风媒植物的花,花丝细长,伸出花被之外,花粉平滑、体轻,微风即可将花粉吹送出相当远的距离。雌蕊的柱头多为分枝的羽状,面积大,容易承受花粉。风媒花是较原始的一种适应类型,由于风的运动没有规律,仅有极小部分的花粉能达到柱头,因此风媒植物大多能产生大量的花粉以保证授粉成功。如每株玉米平均所产的花粉数约有6000万粒之多。地球上约有10%的显花植物(禾本科、莎草科、灯心草科、桦木科等)借助风力授粉。在海岛上,几乎三分之一的植物是风媒植物;在北方森林中,主要乔木都是风媒的;草原地区的风媒植物也比较多。
伴人植物 借助人类活动传播和扩大分布区的植物。伴人植物的分布,有些是人类有意识引入后野生化造成的;有些是人类活动无意识地造成它们的传播,包括一些对人类有害的植物和农田杂草等。例如藜 (Chenopo-dium album)、钾猪毛菜(Salsola kali)等杂草在欧洲和北美都普遍分布,它们是欧洲移民带到北美的。世界各地的伴人植物具有不同的伴人植物区系。如澳大利亚的维多利亚州有57种伴人植物来源于欧洲,11种来源于北非和中非,29种来源于南非,2种来源于亚洲。
为了达到对生活型进行综合分类的目的,一些人主张选择最典型的少数特征来反映植物综合适应特征。拉恩基尔(Raunkiaer,1905)认为植物延续生存的芽(称之为更新芽)是对环境最敏感、最娇嫩和至关重要的部分,它对不利的恶劣条件(如干旱、严寒)的防御能力、防御特点可以做为植物适应环境特征的主要标志。据此,他划分出五种基本生活型类群)(称为生物型,后人称之为休眠型)。
1)高位芽植物(P) 更新芽高于地面以上25cm处。包括大高位芽植物(高度超过30m),中高位芽植物(8—30m的乔木),小高位芽植物(2—8m高的乔木和灌木),矮高位芽植物(低于2m的灌木和草本),藤本高位芽植物,附生植物等。每类又可分为常绿裸芽、常绿鳞芽和落叶等次一级类型。由于高位芽的幅度太大,在实际工作中有时进一步分为:巨型(>30m)、大型(16—30m)中型(8—16m)、小型(2—8m)、矮型(25cm—2m)。
2)地上芽植物(Ch) 更新芽位于地表不到25cm高处,嫩枝在生长不利的季节仍可保存,为小灌木、半灌木(茎下部木质)或草本。其中包括常绿性、落叶性等类型的垫状植物。
3)地面芽植物(H) 在生长不利的季节,地上器官全部或大部分死去。更新芽贴近地面,被枯死的地被物或土壤上层覆盖保护。地上部分枝叶伸展或匍匐,或叶聚合呈莲座状。
4)隐芽植物(Cr) 冬季所有地上部分和一部分地下茎都死去,更新芽藏在地下(称为地下芽植物G)或水中(水生植物或沼生植物)。本类皆为多年生草本植物,在地下器官中储存营养物质。
5)一年生植物(T) 在环境恶劣时地上地下各器官都死去,只留下种子(胚)延续生命。可分为秋季萌生的越冬型,春季萌生的非越冬型,有些在适宜条件下成为二年生植物,另一些在一个生长季能繁殖2—3代。有人认为它应属于不稳定的、相对年青的生活型。