一、实习目的:
1、通过实习,扩大和巩固已学过的基础理论和专业知识,了解和掌握机械制造生产过程的实践知识,为以后的学习和和工作打下良好的基础。
2、培养理论联系实际的能力,是自己学会在实际生产中通过调查研究发现问题并运用所学的知识分析问题和解决问题的基本思路和方法。
3、了解机械制造企业的总体布局、生产组织与管理情况,是自己对机械产品的生产过程,机械生产企业的生产组织与管理工作有一个初步的认识。
4、了解制造技术的领域的科技发展新动态,了解新技术、新材料、新工艺在机械制造生产的实际应用。
5、通过实习了解了解制造领域的东城技术工人的工作特点,增强热爱劳动,热爱所学专业的情趣。
二、实习时间:2010年12月20日到12月25日
三、实习地点:
1、来动内燃机有限公司
2、山东汽车制造有限公司
3、烟台福斯特汽车配件有限公司
4、山东鸿达建工有限集团
四、实习内容:
今天是第一次到机械厂实习,没有什么准备,只是看了一下零件的加工。第一个车间是箱体零件加工的车间,伴随着车间中空中吊车的游走声,穿过那挂着破碎门帘的陈旧大门.且不说车间的一切,首先让我一惊的是车间上方的两个横幅:多浪费一分钱,就少一分钱和今天工作不努力,明天努力找工作.或许这样的口号对我们这些大学生来说,有点老调和乏味.但我却能感觉到这七,八十年代那些拥有热火朝天的干劲的工人师傅们俭朴的本质和如火的热情。在这里,技术工人告诉我箱体加工工艺路线的安排车床主轴箱要求加工的表面很多。在这些加工表面中,平面加工精度比孔的加工精度容易保证,于是,箱体中主轴孔(主要孔)的加工精度、孔系加工精度就成为工艺关键问题。这里的工人还告诉我在工艺路线的安排中应注意三个问题:1).工件的时效处理箱体结构复杂壁厚不均匀,铸造内应力较大。由于内应力会引起变形,因此铸造后应安排人工时效处理以消除内应力减少变形。一般精度要求的箱体,可利用粗、精加工工序之间的自然停放和运输时间,得到自然时效的效果。但自然时效需要的时间较长,否则会影响箱体精度的稳定性。对于特别精密的箱体,在粗加工和精加工工序间还应安排一次人工时效,迅速充分地消除内应力,提高精度的稳定性。2).安排加工工艺的顺序时应先面后孔由于平面面积较大定位稳定可靠,有利与简化夹具结构检少安装变形。从加工难度来看,平面比孔加工容易。先加工批平面,把铸件表面的凹凸不平和夹砂等缺陷切除,在加工分布在平面上的孔时,对便于孔的加工和保证孔的加工精度都是有利的。因此,一般均应先加工平面。 3).粗、精加工阶段要分开箱体均为铸件,加工余量较大,而在粗加工中切除的金属较多,因而夹紧力、切削力都较大,切削热也较多。加之粗加工后,工件内应力重新分布也会引起工件变形,因此,对加工精度影响较大。为此,把粗精加工分开进行,有利于把已加工后由于各种原因引起的工件变形充分暴露出来,然后在精加工中将其消除。
接下来参观了轴类零件的加工过程合理选用材料和规定热处理的技术要求,对提高轴类零件的强度和使用寿命有重要意义,同时,对轴的加工过程有极大的影响。一般轴类零件常用45钢,根据不同的工作条件采用不同的热处理规范(如正火、调质、淬火等),以获得一定的强度、韧性和耐磨性。对中等精度而转速较高的轴类零件,可选用40Cr等合金钢。这类钢经调质和表面淬火处理后,具有较高的综合力学件能。精度较高的轴,有时还用轴承钢GCrls和弹簧钢65Mn等材料,它们通过调质和表面淬火处理后,具有更高耐磨性和耐疲劳性能。对于高转速、重载荷等条件下工作的轴,可选用20CrMnTi、20MnZB、20Cr等低碳含金钢或38CrMoAIA氮化钢。低碳合金钢经渗碳淬火处理后,具有很高的表面硬度、抗冲击韧性和心部强度,热处理变形却很小。处于对经济的考虑,轴类零件的毛坯最常用的是圆棒料和锻件,只有某些大型的、结构复杂的轴才采用铸件。轴类零件还要进行预加工。
我到车间的时候工人正在用切割机切断棒料毛坯,工人师傅说轮类零件在切削加工之前,还要对其毛坯进行预加工。预加工包括校正、切断和切端面和钻中心孔。而轴类零件加工的主要问题是如何保证各加工表面的尺寸精度、表面粗糙度和主要表面之间的相互位置精度。从技术人员口中得知轴类零件加工的典型工艺路线是毛坯及其热处理→预加工→车削外圆→铣键槽等→热处理→磨削。在接下来的车间里我看到滚轴装配的全过程。首先将轴承和壳体孔清洗干净,然后在配合表面上涂润滑油。根据尺寸大小和过盈量大小采用压装法、加热法或冷装法,将轴承装入壳体孔内。轴承装入壳时,如果轴承上有油孔,应与壳体上油孔对准。装配时,特别要注意轴承和壳体孔同轴.为此在装配时,尽量采用导向心轴。轴承装入后还要定位,当钻骑缝螺纹底孔时,应该用钻模板,否则钻头会向硬度较低的抽承方向偏移。由于装入壳体后轴承内孔会收缩,所以通常应加大轴承内孔尺寸,轴承(铜件)内孔加大尺寸量。使轴承装入后,内孔与轴颈之间还能保证适当的间隙。也有在制造轴承时.内孔留精铰量,待轴承装配后,再精铰孔,保证其配合间隙。精铰时,要十分注意铰刀的导向,否则会造成轴承内孔轴线的偏斜。在整个过程中,注意里要非常集中,一点差池都会造成巨大的损失。
套筒类零件是指在回转体零件中的空心薄壁件,是机械加工中常见的一种零件,在各类机器中应用很广,主要起支承或导向作用。由于功用不同,其形状结构和尺寸有很大的差异,常见的有支承回转轴的各种形式的轴承圈、轴套;夹具上的钻套和导向套;内燃机上的气缸套和液压系统中的液压缸、液压阀的阀套等都属于套类零件。
套筒类零件的结构与尺寸随其用途不同而异,但其结构一般都具有以下特点:
①外圆直径 d一般小于其长度L,通常L/d<5;
②内孔与外圆直径之差较小,故壁薄易变形;
③内外圆回转面的同轴度要求较高;
④结构较简单。
二、套筒类零件技术要求
套筒类零件的外圆表面多以过盈或过渡配合与机架或箱体孔相配合,起支承作用。内孔主要起导向或支承作用,常与运动轴、主轴、活塞、滑阀相配合。有些套筒的端面或凸缘有定位或承受载荷的作用。套筒类零件虽然形状结构不一,但仍有共同特点和技术要求,根据使用情况可对套筒类零件的外圆与内孔提出如下要求:
1.尺寸及表面粗糙度要求
外圆直径精度通常为 IT5-IT7, 表面粗糙度 Ra为 5-0.63,要求较高的可达0.04。
内孔作为套类零件支承或导向的主要表面,要求内孔尺寸精度一般为 IT6-IT7,表面粗糙度要求Ra2.5-0.16,有的精密套筒及阀套的内孔尺寸精度要求为IT4-IT5,也有的套筒(如油缸、气缸缸筒)由于与其相配的活塞上有密封圈,故对尺寸精度要求较低(IT8-IT9),但对表面粗糙度要求较高,一般为Ra2.5-1.6。
2.几何形状精度要求
通常将外圆与内孔的几何形状精度控制在直径公差以内即可,对精密轴套有时控制在孔径公差的 1/2-1/3,甚至更严。
对较长套筒,除圆度有要求以外,还应有孔的圆柱度要求。
3.位置精度要求
主要应根据套类零件在机器中功用和要求而定。如果内孔的最终加工是在套筒装配后进行时,可降低对套筒内、外圆表面的同轴度要求;如果内孔的最终加工是在装配之前进行时,则同轴度要求较高,通常同轴度为 0.01-0.06mm。
套筒端面(或凸缘)常用来定位或承受载荷,对端面与外圆或内孔轴心线的垂直度要求较高,一般为 0.05-0.02mm。
三、套筒类零件的材料、毛坯及热处理
套筒类零件毛坯材料的选择主要取决于零件的功能要求、结构特点及使用时的工作条件,一般用钢、铸铁、青铜或黄铜和粉末冶金等材料制成。
套筒类零件的毛坯制造方式的选择与毛坯结构尺寸、材料和生产批量的大小等因素有关。孔径较大(大于20mm)时,常采用型材(如无缝钢管)、带孔的锻件或铸件;孔径较小(小于 20mm)时,多选择热轧或冷拉棒料,也可采用实心铸件;大批大量生产时,可采用冷挤压、粉末冶金等先进工艺,不仅节约原材料,而且生产率及毛坯质量均可提高。
套筒类零件的功能要求和结构特点决定了套筒类零件的热处理方法有渗碳淬火、表面淬火、调质、高温时效及渗氮。
四、工件的定位装夹
轴向刚性比径向好,用卡爪径向夹紧,工件变形大,若沿轴向施加夹紧力,变形就会小得多:
五、内孔表面的加工
常用的孔加工方法有:钻孔、扩孔、铰孔、镗孔、拉孔、磨孔以及光整加工。
与钻孔、扩孔一样,只要工件与刀具之间有相对的旋转运动和轴向进给运动,就可进行铰削加工。因此,车床、钻床、镗床和铣床都可完成铰孔作业。
铰削适合于加工钢、铸铁和有色金属材料,但不能加工硬度过高的材料(如淬火钢、冷硬铸铁等)。
拉刀:
拉削在工业生产中应用很广泛,可加工不同的内外表面,种类也很多,如按加工表面的不同,可分为内拉刀和外拉刀, 内拉刀用于加工内表面。常见的有圆孔拉刀、花键拉刀、方孔拉刀和键槽拉刀等。一般内拉刀刀齿的形状都做成被加工孔的形状。外拉刀用于加工外成形表面。在我国内拉刀比外拉刀应用更普遍些。 普通圆孔拉刀的结构如图所示:
珩磨是磨削加工的一种特殊形式,属于光整加工,需要在磨削或精镗的基础上进行。
珩磨加工范围比较广,特别是大批大量生产中采用专用珩磨机珩磨更为经济合理,对于某些零件,珩磨已成为典型的光整加工方法,如发动机的气缸套、连杆孔和液压缸筒等。
(1)珩磨原理
在一定压力下,珩磨头上的砂条(油石)与工件加工表面之间产生复杂的相对运动,珩磨头上的磨粒起切削、刮擦和挤压作用,从加工表面上切下极薄的金属层。
(2)珩磨方法
珩磨所用的工具是由若干砂条(油石)组成的珩磨头,四周砂条能作径向涨缩,并以一定的压力与孔表面接触。
珩磨头与工件之间的旋转和往复运动,使砂条的磨粒在孔表面上的切削轨迹形成交叉而又不相重复的网纹。珩磨时磨条便从工件上切去极薄的一层材料,并在孔表面形成交叉而不重复的网纹切痕(如图), 这种交叉而不重复的网纹切痕有利于贮存润滑油,使零件表面之间易形成—层油膜,从而减少零件间的表面磨损。
(3)珩磨加工的特点
1)工件发热少,不易烧伤,而且变形层很薄,从而可获得较高的表面质量。
珩磨时砂条与工件孔壁的接触面积很大,磨粒的垂直负荷仅为磨削的 1/50-1/100。
珩磨的切削速度较低,一般在100m/min以下,仅为普通磨削的 1/30-1/100。
在珩磨时,注入的大量切削液,可使脱落的磨粒及时冲走,还可使加工表面得到充分冷却。
2)珩磨可获得较低的表面粗糙度,表面粗糙度Ra可达 0.2-0.025。
3)珩磨的尺寸精度需由测量保证。
4)珩磨加工不能修正孔的相对位置误差(如内外圆的同轴度),因此,孔的位置精度应在珩磨前的精加工工序中予以保证。
珩磨头与机床主轴采用浮动联接,珩磨头工作时,由工件孔壁作导向,沿预加工孔的中心线作往复运动——自为基准。
5)珩磨孔的生产率高,机动时间短,加工质量高,加工范围大,可加工铸铁件、淬火和不淬火的钢件以及青铜件等,但不宜加工韧性大的有色金属。
1、箱体类零件的功用和结构特点
功用:
箱体类零件是机器或箱体部件的基础件。它将机器或箱体部件中的轴、轴承、套和齿轮等零件按一定的相互位置关系装联在一起,按一定的传动关系协调地运动。因此,箱体类零件的加工质量,不但直接影响箱体的装配精度和运动精度,而且还会影响机器的工作精度、使用性能和寿命。
主要结构特点:
1)形状复杂;
2)体积较大;
3)壁薄容易变形;
4)有精度要求较高的孔和平面。
一般说来,箱体不仅需要加工部位较多,而且加工难度也较大。
2、箱体类零件的材料、毛坯及热处理
箱体零件的材料大都选用 HT200~ HT400的各种牌号的灰铸铁。
某些单件、小批量生产的箱体零件,为了缩短毛坯制造周期和降低成本,可采用钢板焊接结构。
普通精度的箱体零件,一般在铸造之后安排一次人工时效处理。对一些高精度或形状特别复杂的箱体零件,在粗加工之后还要安排一次人工时效处理,以消除粗加工所造成的残余应力。
箱体零件也可采用振动时效来达到消除残余应力的目的。
3、箱体零件的定位装夹方式
箱体零件的结构复杂,加工表面较多,其应按基准统一原则选择精基准方案。所采用的精基准方案主要有以下两种:
(1)三个互相垂直的平面
底面——具有较大的支承面积,为第一基准,三个自由度;
某个侧面——长度较大,为第二基准,两个自由度;
某个端面——为第三基准,一个自由度。
(2)一面两孔——一个平面和两个与平面垂直的孔,定位元件为:两块长条支承板(3) + 短圆柱销(2) + 短菱形销(1)
一、轴类零件的分类、技术要求
轴是机械加工中常见的典型零件之一。它在机械中主要用于支承齿轮、带轮等传动件,以传递扭矩。按结构形式不同,轴可以分为阶梯轴、光轴、空心轴、曲轴、凸轮轴、偏心轴、各种丝杠等,其中阶梯传动轴应用较广。
根据轴类零件的功用和工作条件,其技术要求主要在以下方面:
尺寸精度
轴类零件的主要表面常为两类:一类是与轴承内圈配合的外圆轴颈,即支承轴颈,用于确定轴的位置并支承轴,尺寸精度要求较高,通常为IT 5~IT7;另一类为与各类传动件配合的轴颈,即配合轴颈,其精度稍低,常为IT7~IT9。
几何形状精度
主要指轴颈表面、外圆锥面、锥孔等重要表面的圆度、圆柱度。
相互位置精度
包括内、外表面、重要轴面的同轴度、圆的径向跳动、重要端面对轴心线的垂直度、端面间的平行度等。
表面粗糙度
轴的加工表面都有粗糙度的要求,一般根据加工的可能性和经济性来确定。支承轴颈常为,传动件配合轴颈为。
二、轴类零件的材料、毛坯及热处理
1.材料
常用45钢,精度较高的轴可选用40Cr、轴承钢GCr15、弹簧钢65Mn,也可选用球墨铸铁;对高速、重载的轴,选用20CrMnTi、20Mn2B、20Cr等低碳合金钢或38CrMoAl氮化钢。
2.毛坯
常用圆棒料和锻件;大型轴或结构复杂的轴采用铸件。毛坯经过加热锻造后,可使金属内部纤维组织沿表面均匀分布,获得较高的抗拉、抗弯及抗扭强度。
3.热处理
锻造毛坯在加工前,均需安排正火或退火处理,使钢材内部晶粒细化,消除锻造应力,降低材料硬度,改善切削加工性能。
调质一般安排在粗车之后、半精车之前,以获得良好的物理力学性能。
表面淬火一般安排在精加工之前,这样可以纠正因淬火引起的局部变形。
精度要求高的轴,在局部淬火或粗磨之后,还需进行低温时效处理。
三、轴类零件的定位装夹方式
主要有以下三种:
1.采用两中心孔定位装夹
一般以重要的外圆面作为粗基准定位加工出中心孔,再以轴两端的中心孔为定位精基准;尽可能做到基准统一、基准重合、互为基准,并实现一次安装加工多个表面。
2.用外圆表面定位装夹
对于空心轴或短小轴等不可能用中心孔定位的情况,可用轴的外圆面定位、夹紧并传递扭矩。一般采用三爪卡盘、四爪卡盘等通用夹具,或各种高精度的自动定心专用夹具,如弹性夹头等。
五、典型加工工艺路线
轴类零件的主要加工表面是外圆表面,也还有常见的特形表面。对普通精度的轴类零件加工,其典型的工艺路线如下:
毛坯及其热处理→预加工→车削外圆→铣键槽(花键槽、沟槽)→热处理→磨削→终检
轴类零件的预加工——校直 毛坯在制造、运输和保管过程中,常会发生弯曲变形,为保证加工余量的均匀及装夹可靠,一般冷态下在各种压力机或校直机上进行校直。
图2所示为一蜗杆轴,材料选用 40Cr 钢,生产类型属于小批量生产
在这个科技时代中,高技术产品品种类繁多,生产工艺、生产流程也各不相同,但不管何种产品,从原料加工到制成产品都是遵循一定的生产原理,通过一些主要设备及工艺流程来完成的。
在这里,我比较全面地了解机械加工及相关典型零件的生产技术过程。初步了解典型的机电一体化产品和设备的生产过程、培养了收集资料的能力及提高分析问题的能力,使我更好地学习、掌握机械工程专业知识。在实习中也感到了生活的充实和学习的快乐,以及获得知识的满足。真正的接触了社会,使我消除了走向社会的恐惧心里,让我对未来充满了信心,以良好的心态去面对社会。同时,也让我们体验到了工作的艰辛,了解了当前社会大学生所面临的严峻问题,促使自己努力学习更多的知识,为自己今后的工作奠定良好的基础。
通过这次实习我知道生活的艰辛和工作的乐趣,在机械加工这一方面我还有很多不了解的地方,还需要学习。在今后是生活和学习中我会更加努力。这样的学习使我的脑海中对机械有一个大体的轮廓,让一个个零件的加工都在我的眼前运作.突然感觉古人的那句纸上得来终觉浅,绝知此事要躬行颇有道理.我相信有了这些实践的感性认识,我们以后必能更有针对性地学习理论知识.在此,我感谢工厂的友情合作,感谢工厂师傅们的精心的教导.为了明天,我会更加努力地奋斗!