最新文章专题视频专题问答1问答10问答100问答1000问答2000关键字专题1关键字专题50关键字专题500关键字专题1500TAG最新视频文章推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37视频文章20视频文章30视频文章40视频文章50视频文章60 视频文章70视频文章80视频文章90视频文章100视频文章120视频文章140 视频2关键字专题关键字专题tag2tag3文章专题文章专题2文章索引1文章索引2文章索引3文章索引4文章索引5123456789101112131415文章专题3
当前位置: 首页 - 正文

定积分在几何中的简单应用

来源:动视网 责编:小OO 时间:2025-09-28 19:27:50
文档

定积分在几何中的简单应用

《定积分在几何中的简单应用》教学设计张家口市涿鹿县北晨学校曹国凤2012年3月25日《定积分在几何中的简单应用》教学设计设计教师:曹国凤教学年级:高二年级课题名称:定积分在几何中的简单应用教材版本:人教版高中数学选修2-2授课时间:45分钟一.教学构思本节课通过创设情景、热身训练、问题探究、抽象归纳,巩固练习、应用提升等探究性活动,培养学生的数学创新精神和实践能力,使学生们掌握定积分解题的规律,体会数学学科研究的基本过程与方法。二.教材分析定积分的应用是在学生学习了定积分的概念、定积分的计算、
推荐度:
导读《定积分在几何中的简单应用》教学设计张家口市涿鹿县北晨学校曹国凤2012年3月25日《定积分在几何中的简单应用》教学设计设计教师:曹国凤教学年级:高二年级课题名称:定积分在几何中的简单应用教材版本:人教版高中数学选修2-2授课时间:45分钟一.教学构思本节课通过创设情景、热身训练、问题探究、抽象归纳,巩固练习、应用提升等探究性活动,培养学生的数学创新精神和实践能力,使学生们掌握定积分解题的规律,体会数学学科研究的基本过程与方法。二.教材分析定积分的应用是在学生学习了定积分的概念、定积分的计算、
《定积分在几何中的简单应用》教学设计

张家口市涿鹿县北晨学校

曹国凤

2012年3月25日

《定积分在几何中的简单应用》教学设计

设计教师:

曹国凤教学年级:

高二年级

课题名称:

定积分在几何中的简单应用

教材版本:人教版高中数学选修2-2

授课时间:45分钟

一.

教学构思

本节课通过创设情景、热身训练、问题探究、抽象归纳,巩固练习、应用提升等探究性活动,培养学生的数学创新精神和实践能力,使学生们掌握定积分解题的规律,体会数学学科研究的基本过程与方法。
二.

教材分析

定积分的应用是在学生学习了定积分的概念、定积分的计算、定积分的几何意义之后,对定积分知识的总结和升华,通过用定积分解决一些简单的面积问题,初步感受定积分在解决数学问题与实际问题中的作用,体会导数与定积分之间的内在联系。 

三.

教学目标

【知识与技能】 通过本节课的探究,学生能够应用定积分解决不太规则的平面图形的面积,能够初步掌握应用定积分解决实际问题的基本思想和方法。

【过程与方法】探究过程中通过数形结合的思想,加深对知识的理解,同时体会到数学研究的基本思路和方法。

【情感、态度与价值观】探究式的学习过程能够培养学生严谨的科学思维习惯和方法,培养学生勇于探索和实践的精神;

四.重点、难点

【教学重点】应用定积分解决平面图形的面积,使学生在解决问题的过程中体会定积分的价值。

【教学难点】如何恰当选择积分变量和确定被积函数。

五.

教学方法

教学方法是“问题诱导——启发讨论——探索结果”、“直观观察——抽象归纳——总结规律”的一种研究性教与学的方法,过程中注重“诱、思、探、练”的结合,从而引导学生转变学习方式。采用激发兴趣、主动参与、积极体验、自主探究地学习,形成师生互动的教学氛围。

师生活动设计意图
(一)课前准备:

复习定积分的概念、定积分的计算、定积分的几何意义.

(二)情景引入:

    展示精美的大桥油画,讲述古代数学家的故事及伟大发现:拱形的面积

【课件展示】课题:定积分在几何中的简单应用

                  油画图片

问:桥拱的面积如何求解呢?

答:……

【学生活动】本环节安排学生讨论,自主发现解决问题方向——定积分跟面积的关系。

(三)新课讲授:

【热身训练】练习1.计算  

  2.计算 

【学生活动】思考口答

【课件展示】定积分表示的几何图形、练习答案. 

            

【热身训练】练习3.用定积分表示阴影部分面积

                                               

图1                      图2

【学生活动】回忆并口答图1的答案;

引导学生由X为积分变量的定积分类型来发现以Y为积分变量的另一种定积分类型。

【得出结论】定积分表示曲边梯形面积的两种类型.        

【板书】配合学生探究的进展书写推理的过程.

【课件展示】

图1 选择X为积分变量,曲边梯形面积为

图2 选择Y为积分变量,曲边梯形面积为

【问题探究】

【课件展示】探究由曲线所围平面图形的面积解答思路

【学生活动】思考、探究、讨论

【展示结论】

【例题实践】例1.计算由曲线与所围图形的面积.

【师生活动】探究解法的过程.

1.找到图形----画图得到曲边形.

2.曲边形面积解法----转化为曲边梯形,做出辅助线.

3.定积分表示曲边梯形面积----确定积分区间、被积函数.

4.计算定积分.

【板书】根据师生探究的思路板书重要分析过程.

【课件展示】解答过程

解:作出草图,所求面积为图中阴影部分的面积.

解方程组得到交点横坐标为

曲边梯形OABC曲边梯形OABD

【例题实践】例2.计算由与所围图形的面积.

【师生活动】讨论探究解法的过程

1.找到图形----画图得到曲边形.

2.曲边形面积解法----转化为曲边梯形,做出辅助线.

3.定积分表示曲边梯形面积----确定积分区间、被积函数.

问题:表示不出定积分.

探讨:X为积分变量表示不到,那换成Y为积分变量呢?

4.计算定积分.

【板书】根据师生探究的思路

板书重要分析过程.

【课件展示】解答过程

解:作出草图,所求面积为

图中阴影部分的面积

解方程组得到交点坐标为(2,-2)及(8,4)

选y为积分变量

【抽象归纳】解由曲线所围的平面图形面积的解题步骤

【学生活动】学生根据例题探究的过程来归纳

【教师简单点评】帮助学生修改、提炼,强调注意注意选择y型积分变量时,要把函数变形成用y表示x的函数 .

【课件展示】解由曲线所围的平面图形面积的解题步骤:

1.画草图,求出曲线的交点坐标.

2.将曲边形面积转化为曲边梯形面积.

3.根据图形特点选择适当的积分变量.(注意选择y型积分变量时,要把函数变形成用y表示x的函数)

4.确定被积函数和积分区间.

5.计算定积分,求出面积.

【巩固练习】

练习4.计算由曲线与及轴所围平面图形的面积.

【学生活动】学生分组合作完成

【成果展示】邀请同学们把自己的成果展示给大家,发现这道题目有多种解答方法,过程中解决学生在解题过程中暴露出来的各种问题。

S2

S1

S1

S22

2

2

4

8

O

x

4

A:  

B:  

C:  

【师生活动】此题为一题多解,解体的大方向分为选X做积分变量和选Y做积分变量.

问:遇到一题多解时,你会想到什么?

答:找最简单的解法.

问:以例2为例,如何寻找最简解法?

答:我们熟悉X做积分变量的类型;

做辅助线时,尽量将曲边形转化成我们熟悉的平面图形,如三角形、矩形、梯形和曲边梯形组合的图形.

【巩固练习】

练习5.计算由曲线与及、

所围平面图形的面积.

【学生活动】学生思考

【成果展示】邀请一位同学把自己的成果展示给大家

 

                     

                     

【师生活动】

问:正确,此题还有其他解法吗?

答: 所以只算一个S,取2倍就可以了.

【教师点评】做的漂亮,解题时要注意发现题目的特征,联系我们以前的知识将问题化简后再解答,提高效率.

【应用提升】

如图,一桥拱的形状为抛物线,已知该抛物线拱的高为常数h,

宽为常数b.          

求证:抛物线拱的面积

【师生活动】探究解题方法

1.建立平面直角坐标系  确定抛物线方程

   2.求由曲线围成的平面图形面积的解题步骤

问:如何建立平面直角坐标系会使得抛物线方程的求解简单

答:以抛物线的顶点为坐标原点建立坐标系.

【学生活动】学生求解抛物线方程.

【成果展示】投影学生练习

如图建立平面直角坐标系,

可设抛物线方程为,

代抛物线上一点入方程,

则有  解得,所以抛物线方程为.

【教师点评】在投影中与全班同学一起点评学生的练习.

【师生活动】探究、并在投影中完成该题

问:所求图形有什么特点?

答:左右对称;可以解答一半取2倍.

【成果展示】在黑板上与学生共同完成

设一半的面积为S,则有  

(四).互动小结

问:如何用定积分解决曲边形面积问题呢?

答:1.画草图,求出曲线的交点坐标.

2.将曲边形面积转化为曲边梯形面积.

3.根据图形特点选择适当的积分变量.(注意选择y型积分变量时,要把函数变形成用y表示x的函数)

4.确定被积函数和积分区间.

5.计算定积分,求出面积.

问:解答曲线所围的平面图形面积时须注意什么问题?

答:选择最优化的积分变量;根据图形特点选择最优化的解题方法.

(五).作业:(1)课本P67 A组 1. P68 B组 3.

 (2)高考调研P59--61

培养学生复习的学习习惯。

为激发学生们的求知欲,设下悬念,为后面作开启性的铺垫。

复习定积分的几何意义

培养学生用发展、联系的哲学思想解决问题

通过探究,发现并掌握数学学科研究的基本过程与方法。

完成了一般理论和具体问题的有机结合,初步达到了识记的目标,突显了教学重点。

使学生懂得如何灵活选择积分变量,确定被积函数,通过该题突破教学难点。

学生得到了一些解题心得,及时指导学生进行抽象归纳,便是探究的阶段小结,得到解题的一般方法。

趁学生探索欲望高涨的时候,适时给学生准备了巩固练习,目的在于巩固解题方法、由一题多解锻炼学生的发散思维

体现了对称的思想和分类思想,培养学生的观察能力和分析思考问题的严密性,在此过程中进行了数学美育的渗透

把本节课的探究活动推向高潮,解决了前面设下的悬念的同时,实现了生活中的实际问题与抽象数学的完美结合。

提问式的课堂小结,目的在于调动学生积极参与梳理知识的过程,培养学生在探究之后整合知识的能力。

作业即是探究活动的一种延续。

文档

定积分在几何中的简单应用

《定积分在几何中的简单应用》教学设计张家口市涿鹿县北晨学校曹国凤2012年3月25日《定积分在几何中的简单应用》教学设计设计教师:曹国凤教学年级:高二年级课题名称:定积分在几何中的简单应用教材版本:人教版高中数学选修2-2授课时间:45分钟一.教学构思本节课通过创设情景、热身训练、问题探究、抽象归纳,巩固练习、应用提升等探究性活动,培养学生的数学创新精神和实践能力,使学生们掌握定积分解题的规律,体会数学学科研究的基本过程与方法。二.教材分析定积分的应用是在学生学习了定积分的概念、定积分的计算、
推荐度:
  • 热门焦点

最新推荐

猜你喜欢

热门推荐

专题
Top