最新文章专题视频专题问答1问答10问答100问答1000问答2000关键字专题1关键字专题50关键字专题500关键字专题1500TAG最新视频文章推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37视频文章20视频文章30视频文章40视频文章50视频文章60 视频文章70视频文章80视频文章90视频文章100视频文章120视频文章140 视频2关键字专题关键字专题tag2tag3文章专题文章专题2文章索引1文章索引2文章索引3文章索引4文章索引5123456789101112131415文章专题3
当前位置: 首页 - 正文

中考数学易错题专题训练-二次函数练习题及答案

来源:动视网 责编:小OO 时间:2025-09-28 20:16:01
文档

中考数学易错题专题训练-二次函数练习题及答案

一、二次函数真题与模拟题分类汇编(难题易错题)1.已知二次函数的图象以A(﹣1,4)为顶点,且过点B(2,﹣5)(1)求该函数的关系式;(2)求该函数图象与坐标轴的交点坐标;(3)将该函数图象向右平移,当图象经过原点时,A、B两点随图象移至A′、B′,求△OA′B′的面积.【答案】(1)y=﹣x2﹣2x+3;(2)抛物线与x轴的交点为:(﹣3,0),(1,0)(3)15.【解析】【分析】(1)已知了抛物线的顶点坐标,可用顶点式设该二次函数的解析式,然后将B点坐标代入,即可求出二次函数的解析式;
推荐度:
导读一、二次函数真题与模拟题分类汇编(难题易错题)1.已知二次函数的图象以A(﹣1,4)为顶点,且过点B(2,﹣5)(1)求该函数的关系式;(2)求该函数图象与坐标轴的交点坐标;(3)将该函数图象向右平移,当图象经过原点时,A、B两点随图象移至A′、B′,求△OA′B′的面积.【答案】(1)y=﹣x2﹣2x+3;(2)抛物线与x轴的交点为:(﹣3,0),(1,0)(3)15.【解析】【分析】(1)已知了抛物线的顶点坐标,可用顶点式设该二次函数的解析式,然后将B点坐标代入,即可求出二次函数的解析式;
一、二次函数 真题与模拟题分类汇编(难题易错题)

1.已知二次函数的图象以A(﹣1,4)为顶点,且过点B(2,﹣5)

(1)求该函数的关系式;

(2)求该函数图象与坐标轴的交点坐标;

(3)将该函数图象向右平移,当图象经过原点时,A、B两点随图象移至A′、B′,求△O A′B′的面积.

【答案】(1)y=﹣x2﹣2x+3;(2)抛物线与x轴的交点为:(﹣3,0),(1,0)(3)15.

【解析】

【分析】(1)已知了抛物线的顶点坐标,可用顶点式设该二次函数的解析式,然后将B点坐标代入,即可求出二次函数的解析式;

(2)根据函数解析式,令x=0,可求得抛物线与y轴的交点坐标;令y=0,可求得抛物线与x轴交点坐标;

(3)由(2)可知:抛物线与x轴的交点分别在原点两侧,由此可求出当抛物线与x轴负半轴的交点平移到原点时,抛物线平移的单位,由此可求出A′、B′的坐标.由于△OA′B′不规则,可用面积割补法求出△OA′B′的面积.

【详解】(1)设抛物线顶点式y=a(x+1)2+4,

将B(2,﹣5)代入得:a=﹣1,

∴该函数的解析式为:y=﹣(x+1)2+4=﹣x2﹣2x+3;

(2)令x=0,得y=3,因此抛物线与y轴的交点为:(0,3),

令y=0,﹣x2﹣2x+3=0,解得:x1=﹣3,x2=1,

即抛物线与x轴的交点为:(﹣3,0),(1,0);

(3)设抛物线与x轴的交点为M、N(M在N的左侧),

由(2)知:M(﹣3,0),N(1,0),

当函数图象向右平移经过原点时,M与O重合,因此抛物线向右平移了3个单位,

故A'(2,4),B'(5,﹣5),

∴S△OA′B′=×(2+5)×9﹣×2×4﹣×5×5=15.

【点睛】本题考查了用待定系数法求抛物线解析式、函数图象与坐标轴交点、图形面积的求法等知识.熟练掌握待定系数法、函数图象与坐标轴的交点的求解方法、不规则图形的面积的求解方法等是解题的关键.

2.已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.

(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);

(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;

(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.

【答案】(1)b=﹣2a,顶点D的坐标为(﹣,﹣);(2);(3) 2≤t<.

【解析】

【分析】

(1)把M点坐标代入抛物线解析式可得到b与a的关系,可用a表示出抛物线解析式,化为顶点式可求得其顶点D的坐标;

(2)把点M(1,0)代入直线解析式可先求得m的值,联立直线与抛物线解析式,消去y,可得到关于x的一元二次方程,可求得另一交点N的坐标,根据a<b,判断a<0,确定D、M、N的位置,画图1,根据面积和可得△DMN的面积即可;

(3)先根据a的值确定抛物线的解析式,画出图2,先联立方程组可求得当GH与抛物线只有一个公共点时,t的值,再确定当线段一个端点在抛物线上时,t的值,可得:线段GH与抛物线有两个不同的公共点时t的取值范围.

【详解】

解:(1)∵抛物线y=ax2+ax+b有一个公共点M(1,0),

∴a+a+b=0,即b=-2a,

∴y=ax2+ax+b=ax2+ax-2a=a(x+)2-,

∴抛物线顶点D的坐标为(-,-);

(2)∵直线y=2x+m经过点M(1,0),

∴0=2×1+m,解得m=-2,

∴y=2x-2,

则,

得ax2+(a-2)x-2a+2=0,

∴(x-1)(ax+2a-2)=0,

解得x=1或x=-2,

∴N点坐标为(-2,-6),

∵a<b,即a<-2a,

∴a<0,

如图1,设抛物线对称轴交直线于点E,

∵抛物线对称轴为,

∴E(-,-3),

∵M(1,0),N(-2,-6),

设△DMN的面积为S,

∴S=S△DEN+S△DEM=|( -2)-1|•|--(-3)|=−−a,

(3)当a=-1时,

抛物线的解析式为:y=-x2-x+2=-(x+)2+,

由,

-x2-x+2=-2x,

解得:x1=2,x2=-1,

∴G(-1,2),

∵点G、H关于原点对称,

∴H(1,-2),

设直线GH平移后的解析式为:y=-2x+t,

-x2-x+2=-2x+t,

x2-x-2+t=0,

△=1-4(t-2)=0,

t=,

当点H平移后落在抛物线上时,坐标为(1,0),

把(1,0)代入y=-2x+t,

t=2,

∴当线段GH与抛物线有两个不同的公共点,t的取值范围是2≤t<.

【点睛】

本题为二次函数的综合应用,涉及函数图象的交点、二次函数的性质、根的判别式、三角形的面积等知识.在(1)中由M的坐标得到b与a的关系是解题的关键,在(2)中联立两函数解析式,得到关于x的一元二次方程是解题的关键,在(3)中求得GH与抛物线一个交点和两个交点的分界点是解题的关键,本题考查知识点较多,综合性较强,难度较大.

3.如图,关于x的二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和点B与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D.

(1)求二次函数的表达式;

(2)在y轴上是否存在一点P,使△PBC为等腰三角形?若存在.请求出点P的坐标;

(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M、N同时停止运动,问点M、N运动到何处时,△MNB面积最大,试求出最大面积.

【答案】(1)二次函数的表达式为:y=x2﹣4x+3;(2)点P的坐标为:(0,3+3)或(0,3﹣3)或(0,-3)或(0,0);(3)当点M出发1秒到达D点时,△MNB面积最大,最大面积是1.此时点N在对称轴上x轴上方2个单位处或点N在对称轴上x轴下方2个单位处.

【解析】

【分析】

(1)把A(1,0)和C(0,3)代入y=x2+bx+c得方程组,解方程组即可得二次函数的表达式;

(2)先求出点B的坐标,再根据勾股定理求得BC的长,当△PBC为等腰三角形时分三种情况进行讨论:①CP=CB;②BP=BC;③PB=PC;分别根据这三种情况求出点P的坐标;

(3)设AM=t则DN=2t,由AB=2,得BM=2﹣t,S△MNB=×(2﹣t)×2t=﹣t2+2t,把解析式化为顶点式,根据二次函数的性质即可得△MNB最大面积;此时点M在D点,点N在对称轴上x轴上方2个单位处或点N在对称轴上x轴下方2个单位处.

【详解】

解:(1)把A(1,0)和C(0,3)代入y=x2+bx+c,

解得:b=﹣4,c=3,

∴二次函数的表达式为:y=x2﹣4x+3;

(2)令y=0,则x2﹣4x+3=0,

解得:x=1或x=3,

∴B(3,0),

∴BC=3,

点P在y轴上,当△PBC为等腰三角形时分三种情况进行讨论:如图1,

①当CP=CB时,PC=3,∴OP=OC+PC=3+3或OP=PC﹣OC=3﹣3

∴P1(0,3+3),P2(0,3﹣3);

②当PB=PC时,OP=OB=3,

∴P3(0,-3);

③当BP=BC时,

∵OC=OB=3

∴此时P与O重合,

∴P4(0,0);

综上所述,点P的坐标为:(0,3+3)或(0,3﹣3)或(﹣3,0)或(0,0);

(3)如图2,设AM=t,由AB=2,得BM=2﹣t,则DN=2t,

∴S△MNB=×(2﹣t)×2t=﹣t2+2t=﹣(t﹣1)2+1,

当点M出发1秒到达D点时,△MNB面积最大,最大面积是1.此时点N在对称轴上x轴上方2个单位处或点N在对称轴上x轴下方2个单位处.

4.童装店销售某款童装,每件售价为60元,每星期可卖100件,为了促销该店决定降价销售,经市场调查发现:每降价1元,每星期可多卖10件,已知该款童装每件成本30元,设降价后该款童装每件售价元,每星期的销售量为件.

(1)降价后,当某一星期的销售量是未降价前一星期销售量的3倍时,求这一星期中每件童装降价多少元?

(2)当每件售价定为多少元时,一星期的销售利润最大,最大利润是多少?

【答案】(1)这一星期中每件童装降价20元;(2)每件售价定为50元时,一星期的销售利润最大,最大利润4000元.

【解析】

【分析】

(1)根据售量与售价x(元/件)之间的关系列方程即可得到结论.

(2)设每星期利润为W元,构建二次函数利用二次函数性质解决问题.

【详解】

解:(1)根据题意得,(60﹣x)×10+100=3×100,

解得:x=40,

60﹣40=20元,

答:这一星期中每件童装降价20元;

(2)设利润为w,

根据题意得,w=(x﹣30)[(60﹣x)×10+100]=﹣10x2+1000x﹣21000

=﹣10(x﹣50)2+4000,

答:每件售价定为50元时,一星期的销售利润最大,最大利润4000元.

【点睛】

本题考查二次函数的应用,一元二次不等式,解题的关键是构建二次函数解决最值问题,利用图象法解一元二次不等式,属于中考常考题型.

5.如图,在平面直角坐标系中,直线与轴,轴分别交于点A、B,抛物线经过点A和点B,与x轴的另一个交点为C,动点D从点A出发,以每秒1个单位长度的速度向O点运动,同时动点E从点B出发,以每秒2个单位长度的速度向A点运动,设运动的时间为t秒,0﹤t﹤5.

(1)求抛物线的解析式;

(2)当t为何值时,以A、D、E为顶点的三角形与△AOB相似;

(3)当△ADE为等腰三角形时,求t的值;

(4)抛物线上是否存在一点F,使得以A、B、D、F为顶点的四边形是平行四边形?若存在,直接写出F点的坐标;若不存在,说明理由.

【答案】(1)抛物线的解析式为;

(2)t的值为或; 

(3)t的值为或或; 

(4)符合条件的点F存在,共有两个(4,8),,-8).

【解析】

(1)由B、C两点的坐标,利用待定系数法可求得抛物线的解析式;(2)利用△ADE∽△AOB和△AED∽△AOB即可求出t的值;(3)过E作EH⊥x轴于点H,过D作DM⊥AB于点M即可求出t的值;(4)分当AD为边时,当AD为对角线时符合条件的点F的坐标.

解:(1)A(6,0),B(0,8),依题意知,解得,

∴.

(2)∵ A(6,0),B(0,8),∴OA=6,OB=8,AB=10,∴AD=t,AE=10-2t,

①当△ADE∽△AOB时,,∴,∴;

②当△AED∽△AOB时,,∴,∴;

综上所述,t的值为或.

(3) ①当AD=AE时,t=10-2t,∴;

②当AE=DE时,过E作EH⊥x轴于点H,则AD=2AH,由△AEH∽△ABO得,AH=,∴,∴;

③当AD=DE时,过D作DM⊥AB于点M,则AE=2AM,由△AMD∽△AOB得,AM=,∴,∴;

综上所述,t的值为或或.

(4) ①当AD为边时,则BF∥x轴,∴,求得x=4,∴F(4,8);

②当AD为对角线时,则,∴,解得,∵x﹥0,∴,∴.

综上所述,符合条件的点F存在,共有两个(4,8),,-8).

“点睛”本题考查二次函数综合题、相似三角形等知识,解题的关键是学会待定系数法确定函数解析式,学会分类讨论,用方程的思想解决问题,属于中考压轴题.

6.如图:在平面直角坐标系中,直线l:y=x﹣与x轴交于点A,经过点A的抛物线y=ax2﹣3x+c的对称轴是x=.

(1)求抛物线的解析式;

(2)平移直线l经过原点O,得到直线m,点P是直线m上任意一点,PB⊥x轴于点B,PC⊥y轴于点C,若点E在线段OB上,点F在线段OC的延长线上,连接PE,PF,且PE=3PF.求证:PE⊥PF;

(3)若(2)中的点P坐标为(6,2),点E是x轴上的点,点F是y轴上的点,当PE⊥PF时,抛物线上是否存在点Q,使四边形PEQF是矩形?如果存在,请求出点Q的坐标,如果不存在,请说明理由.

【答案】(1)抛物线的解析式为y=x2﹣3x﹣4;(2)证明见解析;(3)点Q的坐标为(﹣2,6)或(2,﹣6).

【解析】

【分析】

(1)先求得点A的坐标,然后依据抛物线过点A,对称轴是x=列出关于a、c的方程组求解即可;

(2)设P(3a,a),则PC=3a,PB=a,然后再证明∠FPC=∠EPB,最后通过等量代换进行证明即可;

(3)设E(a,0),然后用含a的式子表示BE的长,从而可得到CF的长,于是可得到点F的坐标,然后依据中点坐标公式可得到,,从而可求得点Q的坐标(用含a的式子表示),最后,将点Q的坐标代入抛物线的解析式求得a的值即可.

【详解】

(1)当y=0时,,解得x=4,即A(4,0),抛物线过点A,对称轴是x=,得,

解得,抛物线的解析式为y=x2﹣3x﹣4;

(2)∵平移直线l经过原点O,得到直线m,

∴直线m的解析式为y=x.

∵点P是直线1上任意一点,

∴设P(3a,a),则PC=3a,PB=a.

又∵PE=3PF,

∴.

∴∠FPC=∠EPB.

∵∠CPE+∠EPB=90°,

∴∠FPC+∠CPE=90°,

∴FP⊥PE.

(3)如图所示,点E在点B的左侧时,设E(a,0),则BE=6﹣a.

∵CF=3BE=18﹣3a,

∴OF=20﹣3a.

∴F(0,20﹣3a).

∵PEQF为矩形,

∴,,

∴Qx+6=0+a,Qy+2=20﹣3a+0,

∴Qx=a﹣6,Qy=18﹣3a.

将点Q的坐标代入抛物线的解析式得:18﹣3a=(a﹣6)2﹣3(a﹣6)﹣4,解得:a=4或a=8(舍去).

∴Q(﹣2,6).

如下图所示:当点E在点B的右侧时,设E(a,0),则BE=a﹣6.

∵CF=3BE=3a﹣18,

∴OF=3a﹣20.

∴F(0,20﹣3a).

∵PEQF为矩形,

∴,,

∴Qx+6=0+a,Qy+2=20﹣3a+0,

∴Qx=a﹣6,Qy=18﹣3a.

将点Q的坐标代入抛物线的解析式得:18﹣3a=(a﹣6)2﹣3(a﹣6)﹣4,解得:a=8或a=4(舍去).

∴Q(2,﹣6).

综上所述,点Q的坐标为(﹣2,6)或(2,﹣6).

【点睛】

本题主要考查的是二次函数的综合应用,解答本题主要应用了矩形的性质、待定系数法求二次函数的解析式、中点坐标公式,用含a的式子表示点Q的坐标是解题的关键.

7.如图1,在平面直角坐标系中,直线与抛物线交于两点,其中,.该抛物线与轴交于点,与轴交于另一点.

(1)求的值及该抛物线的解析式;

(2)如图2.若点为线段上的一动点(不与重合).分别以、为斜边,在直线的同侧作等腰直角△和等腰直角△,连接,试确定△面积最大时点的坐标.

(3)如图3.连接、,在线段上是否存在点,使得以为顶点的三角形与△相似,若存在,请直接写出点的坐标;若不存在,请说明理由.

【答案】(1);(2)当,即时,最大,此时,所以;(3)存在点坐标为或.

【解析】

分析:(1)把A与B坐标代入一次函数解析式求出m与n的值,确定出A与B坐标,代入二次函数解析式求出b与c的值即可;

 (2)由等腰直角△APM和等腰直角△DPN,得到∠MPN为直角,由两直角边乘积的一半表示出三角形MPN面积,利用二次函数性质确定出三角形面积最大时P的坐标即可;

 (3)存在,分两种情况,根据相似得比例,求出AQ的长,利用两点间的距离公式求出Q坐标即可.

详解:(1)把A(m,0),B(4,n)代入y=x﹣1得:m=1,n=3,∴A(1,0),B(4,3).

 y=﹣x2+bx+c经过点A与点B,∴,解得:,则二次函数解析式为y=﹣x2+6x﹣5;

 (2)如图2,△APM与△DPN都为等腰直角三角形,∴∠APM=∠DPN=45°,∴∠MPN=90°,∴△MPN为直角三角形,令﹣x2+6x﹣5=0,得到x=1或x=5,∴D(5,0),即DP=5﹣1=4,设AP=m,则有DP=4﹣m,∴PM=m,PN=(4﹣m),∴S△MPN=PM•PN=×m×(4﹣m)=﹣m2﹣m=﹣(m﹣2)2+1,∴当m=2,即AP=2时,S△MPN最大,此时OP=3,即P(3,0);

 (3)存在,易得直线CD解析式为y=x﹣5,设Q(x,x﹣5),由题意得:∠BAD=∠ADC=45°,分两种情况讨论:

①当△ABD∽△DAQ时,=,即=,解得:AQ=,由两点间的距离公式得:(x﹣1)2+(x﹣5)2=,解得:x=,此时Q(,﹣);

 当△ABD∽△DQA时,=1,即AQ=,∴(x﹣1)2+(x﹣5)2=10,解得:x=2,此时Q(2,﹣3).

 综上,点Q的坐标为(2,﹣3)或(,﹣).

点睛:本题属于二次函数综合题,涉及的知识有:待定系数法求函数解析式,二次函数的图象与性质,相似三角形的判定与性质,两点间的距离公式,熟练掌握各自的性质是解答本题的关键.

8.在平面直角坐标系xOy中,已知抛物线的顶点坐标为(2,0),且经过点(4,1),如图,直线y=x与抛物线交于A、B两点,直线l为y=﹣1.

(1)求抛物线的解析式;

(2)在l上是否存在一点P,使PA+PB取得最小值?若存在,求出点P的坐标;若不存在,请说明理由.

(3)知F(x0,y0)为平面内一定点,M(m,n)为抛物线上一动点,且点M到直线l的距离与点M到点F的距离总是相等,求定点F的坐标.

【答案】(1)抛物线的解析式为y=x2﹣x+1.(2)点P的坐标为(,﹣1).(3)定点F的坐标为(2,1).

【解析】

分析:(1)由抛物线的顶点坐标为(2,0),可设抛物线的解析式为y=a(x-2)2,由抛物线过点(4,1),利用待定系数法即可求出抛物线的解析式;

(2)联立直线AB与抛物线解析式成方程组,通过解方程组可求出点A、B的坐标,作点B关于直线l的对称点B′,连接AB′交直线l于点P,此时PA+PB取得最小值,根据点B的坐标可得出点B′的坐标,根据点A、B′的坐标利用待定系数法可求出直线AB′的解析式,再利用一次函数图象上点的坐标特征即可求出点P的坐标;

(3)由点M到直线l的距离与点M到点F的距离总是相等结合二次函数图象上点的坐标特征,即可得出(1--y0)m2+(2-2x0+2y0)m+x02+y02-2y0-3=0,由m的任意性可得出关于x0、y0的方程组,解之即可求出顶点F的坐标.

详解:(1)∵抛物线的顶点坐标为(2,0),

设抛物线的解析式为y=a(x-2)2.

∵该抛物线经过点(4,1),

∴1=4a,解得:a=,

∴抛物线的解析式为y=(x-2)2=x2-x+1.

(2)联立直线AB与抛物线解析式成方程组,得:

,解得:,,

∴点A的坐标为(1,),点B的坐标为(4,1).

作点B关于直线l的对称点B′,连接AB′交直线l于点P,此时PA+PB取得最小值(如图1所示).

∵点B(4,1),直线l为y=-1,

∴点B′的坐标为(4,-3).

设直线AB′的解析式为y=kx+b(k≠0),

将A(1,)、B′(4,-3)代入y=kx+b,得:

,解得:,

∴直线AB′的解析式为y=-x+,

当y=-1时,有-x+=-1,

解得:x=,

∴点P的坐标为(,-1).

(3)∵点M到直线l的距离与点M到点F的距离总是相等,

∴(m-x0)2+(n-y0)2=(n+1)2,

∴m2-2x0m+x02-2y0n+y02=2n+1.

∵M(m,n)为抛物线上一动点,

∴n=m2-m+1,

∴m2-2x0m+x02-2y0(m2-m+1)+y02=2(m2-m+1)+1,

整理得:(1--y0)m2+(2-2x0+2y0)m+x02+y02-2y0-3=0.

∵m为任意值,

∴,

∴,

∴定点F的坐标为(2,1).

点睛:本题考查了待定系数法求二次(一次)函数解析式、二次(一次)函数图象上点的坐标特征、轴对称中的最短路径问题以及解方程组,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(2)利用两点之间线段最短找出点P的位置;(3)根据点M到直线l的距离与点M到点F的距离总是相等结合二次函数图象上点的坐标特征,找出关于x0、y0的方程组.

9.我们知道,经过原点的抛物线解析式可以是。

(1)对于这样的抛物线:

当顶点坐标为(1,1)时,a=       ;

当顶点坐标为(m,m),m≠0时,a 与m之间的关系式是       ;

(2)继续探究,如果b≠0,且过原点的抛物线顶点在直线上,请用含k的代数式表示b;

(3)现有一组过原点的抛物线,顶点A1,A2,…,An在直线上,横坐标依次为1,2,…,n(n为正整数,且n≤12),分别过每个顶点作x轴的垂线,垂足记为B1,B2,B3,…,Bn,以线段AnBn为边向右作正方形AnBnCnDn,若这组抛物线中有一条经过点Dn,求所有满足条件的正方形边长。

【答案】(1)-1;(2)(3)3,6,9

【解析】

解:(1)-1;。

(2)∵过原点的抛物线顶点在直线上,∴。

∵b≠0,∴。

(3)由(2)知,顶点在直线上,横坐标依次为1,2,…,n(n为正整数,且n≤12)的抛物线为:,即。

对于顶点在在直线上的一点Am(m,m)(m为正整数,且m≤n),依题意,作的正方形AmBmCmDm边长为m,点Dm坐标为(2 m,m),

若点Dm在某一抛物线上,则

,化简,得。

∵m,n为正整数,且m≤n≤12,∴n=4,8,12,m=3,6,9。

∴所有满足条件的正方形边长为3,6,9。

(1)当顶点坐标为(1,1)时,由抛物线顶点坐标公式,有,即。

当顶点坐标为(m,m),m≠0时,。

(2)根据点在直线上,点的坐标满足方程的关系,将抛物线顶点坐标代入,

化简即可用含k的代数式表示b。

由于抛物线与直线只有一个公共点,意味着联立解析式后得到的一元二次方程,其根的判别式等于0,由此可求出m的值和D点坐标。

(3)将依题意,作的正方形AmBmCmDm边长为m,点Dm坐标为(2 m,m),将(2 m,m)代入抛物线求出m,n的关系,即可求解。

10.如图,抛物线经过x轴上的点A(1,0)和点B及y轴上的点C,经过B、C两点的直线为.

①求抛物线的解析式.

②点P从A出发,在线段AB上以每秒1个单位的速度向B运动,同时点E从B出发,在线段BC上以每秒2个单位的速度向C运动.当其中一个点到达终点时,另一点也停止运动.设运动时间为t秒,求t为何值时,△PBE的面积最大并求出最大值.

③过点A作于点M,过抛物线上一动点N(不与点B、C重合)作直线AM的平行线交直线BC于点Q.若点A、M、N、Q为顶点的四边形是平行四边形,求点N的横坐标.

【答案】①;②当时,△PBE的面积最大,最大值为;③点N的横坐标为:4或或.

【解析】

【分析】

①点B、C在直线为上,则B(﹣n,0)、C(0,n),点A(1,0)在抛物线上,所以,解得,,因此抛物线解析式:;

②先求出点P到BC的高h为,于是,当时,△PBE的面积最大,最大值为;

③由①知,BC所在直线为:,所以点A到直线BC的距离,过点N作x轴的垂线交直线BC于点P,交x轴于点H.设,则、,易证△PQN为等腰直角三角形,即,,Ⅰ.,所以解得(舍去),,Ⅱ.,解得,(舍去),Ⅲ.,,解得(舍去),.

【详解】

解:①∵点B、C在直线为上,

∴B(﹣n,0)、C(0,n),

∵点A(1,0)在抛物线上,

∴,

∴,,

∴抛物线解析式:;

②由题意,得,

,,

由①知,,

∴点P到BC的高h为,

∴,

当时,△PBE的面积最大,最大值为;

③由①知,BC所在直线为:,

∴点A到直线BC的距离,

过点N作x轴的垂线交直线BC于点P,交x轴于点H.

设,则、,

易证△PQN为等腰直角三角形,即,

∴,

Ⅰ.,

解得,,

∵点A、M、N、Q为顶点的四边形是平行四边形,

∴;

Ⅱ.,

解得,,

∵点A、M、N、Q为顶点的四边形是平行四边形,

∴,

Ⅲ.,

∴,

解得,,

∵点A、M、N、Q为顶点的四边形是平行四边形,

∴,

综上所述,若点A、M、N、Q为顶点的四边形是平行四边形,点N的横坐标为:4或或.

【点睛】

本题考查了二次函数,熟练掌握二次函数的性质、平行四边形的判定与性质是解题的关键.

文档

中考数学易错题专题训练-二次函数练习题及答案

一、二次函数真题与模拟题分类汇编(难题易错题)1.已知二次函数的图象以A(﹣1,4)为顶点,且过点B(2,﹣5)(1)求该函数的关系式;(2)求该函数图象与坐标轴的交点坐标;(3)将该函数图象向右平移,当图象经过原点时,A、B两点随图象移至A′、B′,求△OA′B′的面积.【答案】(1)y=﹣x2﹣2x+3;(2)抛物线与x轴的交点为:(﹣3,0),(1,0)(3)15.【解析】【分析】(1)已知了抛物线的顶点坐标,可用顶点式设该二次函数的解析式,然后将B点坐标代入,即可求出二次函数的解析式;
推荐度:
  • 热门焦点

最新推荐

猜你喜欢

热门推荐

专题
Top