来源:国土资源情报
一、超前地质预报技术的实践意义
超前地质预报技术出现在上个世纪中后期,是工程地质的一个分支,我国从上个世纪70 年代后期逐渐开始重视这一方面的研究和应用,中国科学院地质研究所的孙广忠院士等作了大量的工作。进人21 世纪,伴随着西部大开发战略的启动,修建的铁路、公路将明显增多。由于隧道长度、埋深等各方面因素的影响,地质条件越趋复杂,隧道施工中遇到的问题也会相应地增多,不可预料的地质灾害如突泥、突水、塌方等成为困绕工程施工的主要难题。近十几年来,隧道施工技术已经有了很大的发展,为了保证在隧道施工时的安全和高效,超前地质预报的研究显得越来越重要。
要保证隧道施工的顺利进行,关键是要预防隧道施工中的地质灾害。如在施工中的塌方是制约快速施工的最主要因素之一,而断层、岩溶是隧道隧洞开挖过程中最常见的不良地质现象,也是引起隧道塌方的“罪魁祸首”之一。由断层及断层破碎带、岩溶陷落柱等引起的隧道隧洞塌方占塌方总数的90%以上。赋存于断层及破碎带中的溶洞、暗河、淤泥带是隧道隧洞突泥突水等地质灾害的最主要根源,断层破碎带是诱发瓦斯爆炸和煤与瓦斯突出等地质灾害的最主要地质因素之一。断层破碎带还与岩爆的发生和产生密切相关。可以说,隧道隧洞施工中发生的地质灾害,几乎都有断层、岩溶有关。
鉴于断层破碎带、岩溶对隧道施工的巨大影响。因此,进行断层破碎带、岩溶超前地质预报的研究具有极其重要的意义。根据隧道隧洞开挖面前方隐伏断层及破碎带、岩溶规模准确定位和评价,采取准确而有效的防治工作,不仅可以减少隧道塌方、突泥等灾害的发生、加快施工进度,而且可以为施工单位节约大量成本,显著提高经济效益。它既可以产生巨大的经济效益,又具有广泛的社会效益。
二、主要地质超前预报的工作方法和手段
目前,常用的隧道长期(长距离)超前地质预报的方法主要有地面地质调查法,断层参数预报法和TRT 、TSP 、HSP 等仪器探测方法;常用的隧道短期(短距离)超前地质预报的方法主要有掌子面编录预测法,不良地质前兆法和地质雷达、红外线超前探水等仪器探测法。各种预报手段和方法都有其各自的适用范围和特点,其中TSP 超前探测是目前预报距离最长、适用范围最广、预报效果最好的超前预报手段和方法。
1 . TRT 超前探测技术
TRT 层析扫描超前预报系统可采用多种地震源产生沿隧道和采矿口传播的信号,这些信号在岩体性质发生改变的地方反射,被用来描述隧道和采矿口前方及其周围的三维结构图。TRT6000 层析扫描超前预报系统是用来指导隧道施工、地层绘图、采矿、地下水文和地质测量、填埋物的描绘和定位、判断地下危险物移动的新一代超前预报系统,它采用了业界独有的层析扫描成像及用捶击产生地震波的技术,从而提高了数据采集效率、降低了操作难度而且使图像更易于理解,更有利于缺陷诊断。TRT60OO 超前预报系统是一个优化的、由硬件和软件组成的测量系统。
TRT6000 在美国、欧洲、日本、新西兰、澳大利亚等国家获得广阔的市场,目前在中国的中铁十四局及五矿集团得到应用,并获得用户高度评价。它具有以下优点:
① TRT6000 超前预报使用锤击作为的震源,可重复利用,不需要耗材,而使用炸药爆炸作为震源每次需要相当费用。
②使用锤击作为震源,可在同一点作多次锤击,通过信号叠加,使异常体反射信号更加明显。
③用锤击作为震源克服了爆炸产生的高能量对周围岩体产生挤压、破坏现象,从而保证能接收到真实的地震波信号。
④由人控制锤击产生地震波、可简单重复,操作简单,而爆炸产生地震波时高频信号迅速衰减,对操作人员的要求比较高。
⑤TRT6000采用高精度的加速计作为传感器,灵敏度高(0.5v/g ) ,最大程度地保留了高频信号,提高了精度及探测距离(硬质岩中为300 米,软质岩中为 150 米),而其他仪器使用的是速度传感器,灵敏度为 ( 1v/g ) ,容易损失高频信号。
⑥传感器和地震波采集、处理器之间采用无线连接,大大简化了装备(只有两个箱子,尺寸见设备配置)两个箱子的重量仅为29Kg ,携带方便。
⑦TRT6000的传感器布点采用立体布点方式,在隧道两边分别布置4 个传感器,然后在隧道顶上布置两个传感器,从而获得真实的三维立体图,直观的再现了异常体的位置、形态、大小。而其他仪器一般在左右边墙各布置一个地震波信息接收器接收地震波,这样的布置方式只能获得异常体的位置信息,而不能获得形状、大小等信息,同时对于大角度斜交隧道的裂隙可能没有反映。
⑧TRT6000 还采用了层析扫描的图像处理方式,绘制三维视图,并可以从多个角度观察缺陷,使得图像更加清晰,易于理解,从而更加轻松地进行缺陷诊断。
⑨TRT6000能描绘到隧道水平和垂直方向的所有异物。而其他仪器用于描绘几乎垂直于隧道的充满空气或水的裂隙,而且只能描绘靠近的垂直裂隙,不能描绘稍远距离的第二或第三裂隙(尤其是充气裂隙)。对于斜交隧道(由其是大角度斜交隧道)的裂隙可能没有反映。对于所描绘的倾斜裂隙,会低估它们的距离。
2 . TSP 超前探测技术
TSP ( Tunnel SeismiC Prediction )是瑞士安伯格测量技术公司于20 世纪90 年代初期开发研制的一套超前预报系统设备,该系统采用地震波反射原理,能长距离地预报隧道施工前方的地质变化,如断层破碎带和其它不良地质带,其准确预报范围为掌子面前方100一150m。现如今TSP 超前地质探测系统在瑞士、德国、法国等发达国家的隧道施工中,已经得到了广泛的应用,尤其是在采用TBM 施工时,利用TSP 进行超前探测地质情况,更是在隧道施工过程中不可缺少的工序。
1996 年,我国铁道部隧道工程局首次引进TSP202 应用于深圳中东部供水水源隧道、梅坎铁路松南隧道、内昆线闸上隧道、朱嘎隧道等。近年来,TsP 技术也越来越得到中国的工程技术人员广泛认同,并成功地应用于秦岭铁路隧道、株六铁路复线、渝怀铁路部分隧道工程、青海公伯峡水电站导流洞、云南元墨高速公路以及山西雁门关公路隧道等几十个工程中。在工程的施工实践中也发挥了重要作用。
TSP 探测技术产品开发经历了TSP202 和TSP203 两代产品。与第一代产品TSP202 相比,TSP203 在硬件设计和软件设计等方面都作了很大的改进,其软件编程除了考虑了于WindowS 视窗的兼容性之外,还特别强调了软件的智能化和评估结果输出的灵活性,使探测工作更加灵活、便捷。对TSP202 和TSP203测量系统的主要特征和配置作了比较。
3 . TGP 超前预报系统
这也是地震反射波技术的一种应用,犹如光波在镜面发生反射一样,岩体中传播的地震波在断层构造破碎带、不同岩性接触带、软弱岩层带、以及岩溶发育带等界面发生反射、绕射和散射,发生波型变换、衰减、干涉等现象,本系统详细分析解译这些地质信息,实现对上述不良地质的超前地质预报。
隧道内地震波的传播环境为三维条件,设想在六面是镜面的空间内你的图像将会如何?隧道内的反射波传播远比地面复杂。需要采用全波列震相分析、偏振归位与空间归位等多项新处理技术,实现界面成像。采集与控制的电路安装在防静电、防电磁干扰、防水的美国进口精密仪器箱体,TGP 超前预报系统采用三分量精密高保真的接收传感器,采取弹性波偏移归位、极化偏振、和空间等相关技术提取地质信息,通过分析反射点的分布形态判断地质病害的类型;通过纵、横波资料的差异性,分析地质病害的性质;结合隧道施工地质调查,总结规律,提高预报准确性。
除了上述三种方法外,在实际的工作中,为了增加地质超前预报的精度,还有下列一些辅助性的手段:
(l )地质雷达法
探地雷达法也叫地质雷达法,简称 GPR ( Ground Penetrating Rada)。该方法利用发射天线将高频电磁波以脉冲形式由隧道掌子面发射至地层中,经地层界面反射返回隧道掌子面,由另一天线接收回波信号,进而通过对接收的回波信号进行处理、分析解释,达到对短距离进行超前预报的目的。地质雷达技术大量地应用在隧道超前预报、工程场地勘查、地下管网探测、工程质量检测、金属矿化代勘查、地表水资源调查甚至考古探查当中,取得了令人满意的效果。
( 2 )水平声波剖面法(HSP)
水平声波剖面法简称 HsP ( Horizontal Sonic ProfileS) ,该方法是地震波反射法的一种。探测时不占用掌子面,将发射源和接收换能器布设在隧道两侧的浅孔内,发射、接收位置均在平行于隧道底面的同一水平面上,即构成一“水平声波剖面”。这种方法的优点是对反射界面倾角没有,测点所接收的反射波路径相等,因此反射波组合形态与反射界面形态基本相同,通常是直达波呈双曲线形态,反射波呈直线形态,图像直观。
( 3 )陆地声纳法
陆地声纳法(Land Sonar)
也叫高频地震波反射法,该方法是钟世航教授1992 年提出的,其实质是垂直地震反射法。它采用极小偏移距、锤击激发、高频超宽带接收反射弹性波进行连续剖面探测。
( 4 )红外探水法
红外探测法(Infrared Detection)是利用地下水的活动会引起岩体红外辐射场强的变化,红外探水仪通过接收岩体红外辐射场强,根据围岩红外辐射场强的变化幅值来确定隧道掌子面前方或洞壁四周是否有隐伏的含水体。
( 5 )超前钻探法
超前钻探法(Advance BoreholeS)是运用钻孔台车从隧道掌子面向前打孔时钻进速度的变化,并结合岩粉和泥浆颜色来预测打孔深度范围内的地质情况。该方法能最直接地揭示隧道掌子面前方的地质特征,所以准确率很高。此法如果辅以数码成像、钻孔声波测试,还可对孔内及掌子面地质情况进行摄影成像并获取岩石波速,这样不仅有利于完成掌子面地质素描、地质展布图,而且有利于对导洞进行地质预报等。( 6 )超前平导法
超前平导法也称超前导坑法(Advanced Tunnels) , 它是在隧道中线附近利用平行导坑先期贯通一个综合性地质探洞,以便对主洞作出直观、精确的地质超前预报,同时还可为主洞施工提供输水、排水、施工通风、施工运输的方便条件。
三、结语
总之,通过地质超前预测预报,减少隧道施工过程中的盲目性,避免隧道施工过程中可能诱发的重大的不良地质或灾害地质的发生,并根据现场预报结果,实施动态信息的施工方法,及时调整或修正围岩分级、设计参数及施工方法,正确指导施工,使施工快速、安全、经济、合理。同时,通过地质超前预测预报,总结出有关隧道在通过岩溶水、软岩、高地应力、断层等重大灾害地质问题地段的一套行之有效的地质超前预测预报方法及其施工方案,随着超前地质预报的技术和设备的不断更新,超前地质预报的应用会越来越广,多种手段、多种方法的互相融合、互相印证,使得超前地质预报水平会越来越高、精度越来越高,理论研究越来越深人,并逐渐成为工程地质学的一个重要组成部分。
地震相分析技术
通过层序的划分,可以大致确定不同类型的砂岩储集体在纵向上发育的有利层位。通过对有利层序内地震相的研究,可以确定砂岩储集体的沉积相及横向的分布范围,从而为砂岩储层的综合预测奠定基础。
一、地震相分析
(一)地震相概念
地震相是沉积相在地震剖面上表现的总和,是由沉积环境(如海相或陆相)所形成的地震特征,是指一定面积内的地震反射单元,该单元内的地震属性参数与相邻的单元不同.它代表产生其反射的沉积物的岩性组合、层理和沉积特征。
(二)地震相分析
地震相分析就是在划分地震层序的基础上,利用地震参数特征上的差别,将地震层序划分为不同的地震相区,然后作出岩相和沉积环境的推断。用来限定地震相单位的基本参数是那些涉及层系内部的反射形态和层系本身的几何
外形的有关参数,目前在地震相分析中使用的地震反射参数及其地质解释如下: (1)反射结构:反射结构反映层理类型、沉积作用、剥蚀和古地貌以及流体类型。
(2)地震相单元外形和平面组合:不同沉积环境下形成的岩相组合有特定的层理模式和形态模式,导致反射结构和外形的特定组合,从而反映沉积环境、沉积物源和地质背景。
(3)反射振幅:反射振幅与波阻抗差有关,反映界面速度一密度差、地层间隔及流体成分和岩性变化。大面积的振幅稳定揭示上覆、下伏地层的良好连续性,反映低能级沉积;振幅快速变化,表示上覆和(或)下伏地层岩性快速变化,是高能环境的反映。
(4)反射频率:反射频率受多种因素的影响,如地层厚度、流体成分、埋深、岩性组合、资料处理参数等。视频率的快速变化往往说明岩性的快速变化,因而是高能环境的产物。
(5)同相轴连续性:它直接反映地层本身的连续性,与沉积作用有关。连续性越好,表明地层越是与相对较低的能量级有关;连续性越差,反映地层横向变化越快,沉积能量越高。
(6)层速度:层速度反映岩性、孔隙度、流体成分和地层压力。
由于同一地震相参数的变化可以由多种地质作用产生,因此地震相分析具有明显的多解性。但是既然地震相是沉积相的反映,地震相必然能够反映储集体或油气储集相带(刘震,1997)。
二、地震相划分标志
(一)外部几何形态
外部形态是一个重要的地震相标志。不同的沉积体或沉积体系,在外形上是有差别的,即使是相似的反射结构,因为外形的不同,也往往反映了完全不同的沉积环境。
目前常见的外部形态(图1)包括席状、席状披盖、楔形、滩形、透镜状、丘
形和充填型等。
1.席状
席状反射是地震剖面上最常见的外形之一,其主要特点是上下界面接行,厚度相对稳定。席状相单元内部通常为平行、亚平行或乱岗状反射结构,可代表深湖、半深湖等稳定沉积环境和滨浅湖、冲积平原等不稳定沉积环境。
图1 地震相单元外形示意图
3.楔状
特点是在倾向方向上厚度向一个方向逐渐增厚,向相反方向减薄而终止;在走向方向则常呈丘状。楔状代表一种快速、不均匀下沉作用,往往出现在同生断层下降盘、斜坡侧壁的三角洲、浊积扇和海底扇中,是陆相断陷湖盆最常见的地震相单元。楔状相单元内部若为前积反射结构,常代表扇三角洲;若分布在同生断层下降盘,而且内部为杂乱、空白、杂乱前积或帚状前积,则是近岸水下扇、冲积扇或其他近源沉积体的较好反映。
4.滩状
顶部平坦而在边缘一侧反射层的上界面微微下倾。一般出现在陆架边缘、地台边缘和碳酸盐岩台边缘。
5.透镜状
特点是中部厚度大,向两侧尖灭,外形呈透镜体。一般出现在古河床、沿岸砂坝处,有时在沉积斜坡上也可见到透镜体。
6.丘形
其特点是凸起或层状地层上隆,高出于围岩。上覆地层上超于丘形之上,大多数丘形是碎屑岩或火山碎屑岩的快速堆积或生物生长形成的正地形。不同成因的丘形体具有不同的外形。根据外形上的差异,可以分为简单扇形复合体(如水下扇、三角洲朵叶)、重力滑塌块体、等高流丘、碳酸盐岩岩隆(滩和礁)。丘状外形在断陷盆地边界也很常见。近岸水下扇、冲积扇等的走向剖面也常显示丘状。湖盆内部的中、小型三维丘状体,特别是在其顶面有披盖反射出现时,是浊积扇的标志。
7.充填型充填外形的判别标志是下凹的底面,它反映了冲刷一充填构造或断层、构造弯曲、下部物质流失引起的局部沉降作用。根据外形的差别可划分为河道充填、海槽充填、盆地充填和斜坡前缘充填等(图2)。根据内部结构还可以划分为上超充填、丘形上超充填、发散充填、前积充填、杂乱充填和复合充填等等(图2)。充填型代表各种成因的沉积体,如侵蚀河道、海底峡谷、海沟、水下扇、滑塌堆积等。
(二)内部反射结构
1.平行与亚平行反射结构
该反射结构以反射层平行或微微起伏为主要特征。它往往出现在席状、席状披盖及充填型单元中。平行与亚平行反射代表均匀沉降的陆架三角洲台地或稳定的盆地平原背景上的匀速沉积作用(图3a, b)。
2.发散反射结构
其特征是相邻两个反射层向同一个方向倾斜(图3c),向发散方向反射增多并加厚,在收敛方向上反射突然终止。出现这种现象可能是由于地层厚度向上倾方向变薄,低于地震分辨率的缘故。发散结构一般出现在楔状单元中,表明沉降速度差异不均衡。在滚动背斜上,三角洲前缘砂岩和页岩反射层系向同期形成的同生断层方向有明显的发散现象,是油气聚集的有利地带。
3.前积反射结构
前积反射结构通常反映某种携带沉积物的水流在向前(向盆地)推进(前积)的
图3 平行(a)、亚平行(b)和发散(c)反射结构示意图
过程中,由前积作用产生的反射结构,这种反射结构在地震剖面上最容易识别。它在倾向剖面上相对于上下反射层系均是斜交的,是陆架一台地或三角洲体系向盆地方向迁移过程中沉积在前三角洲或坡环境内岩相的地震响应。根据其内部形态上的差别,可以进一步划分为s型、斜交型、s复合斜交型、切线斜交型和叠瓦型s种,如图4b。
前积结构在不同方向的测线上表现形式不同。在倾向方向上呈前积型,在走向方向上则呈丘形。
4.乱岗状反射结构
乱岗状反射结构由不规则的、不连续亚平行的反射组成,常有许多非系统性的反射终止和同相轴现象,波动起伏幅度小,接近地震分辨率的极限(图5)。
图4 前积反射结构示意图图5 乱岗状反射结构示意图
a-S型;b一斜交型;c—切线斜交型;d一复合斜交型;e一叠瓦型
乱岗状反射结构侧向变为比较大的明显的斜坡沉积模式,向上递变为平行反射。该反射结构代表一种分散弱水流或河流之间的堆积,解释为前三角洲或三角洲之间的指状交互的较小的斜坡朵叶地层。
5.杂乱状反射结构
杂乱状反射结构的特点是不连续的、不规则的反射,振幅短而强。它可以是地层受到剧烈变形,破坏了连续性之后造成的,也可以是在变化不定相对高能环境下沉积的。在滑塌结构、切割与充填河道综合体、高度断裂的、褶皱的或扭曲的地层,都可能产生这种反射结构。
另外,许多火成岩侵人体、泥丘(盐岩)刺穿以及深部地层都可能出现杂乱反射结构。这些地质体本身可能是均质的或成层的,但因为反射能量太弱,低于随机噪声的水平而呈现不规则的杂乱结构。盐岩与围岩界面不规则也是形成杂乱反射的原因。
6.无反射
没有反射反映了纵向上沉积作用的连续性。如厚度较大的快速和均匀的泥岩沉积,它们有利于碳氢化合物的生成和超压带的形成。无反射有时也反映均质的、无层理的、高度扭曲的或者倾角很陡的砂岩、泥岩、盐岩、礁和火成岩体。三、陆相湖盆主要砂岩沉积体地震相特征
陆相湖盆由于沉积作用和断裂活动的复杂性和多样性,发育形成了多种沉积样式和特殊地质体,它们在地震剖面上具有各自特殊的地震属性,形成了多种多样的地震相类型,可大致划分为以下几种:砂砾岩扇体地震相、三角洲地震相、滩坝砂体地震相、河道砂体地震相、生物礁地震相、火成岩地震相、白云岩地震相、潜山地震相、深湖相泥岩地震相、盐丘地震相等10种类型。这里主要介绍与砂岩沉积体有关的地震相特征。
(一)砂砾岩扇体地震相
陆相湖盆由于湖岸至深湖中心距离短,物源充足,水系发育,使本区沉积发育了大量的砂砾岩扇体。同时不同时期地质条件不同,即使同一时期由于沉积部位不同沉积的砂砾岩扇体,也会因物源的距离、水体深度、湖底坡度、水动力条件和形成机制等各方面的差异而导致其形态、规模、岩性和物性都有所不同。根据沉积相、测井相、地震相标志特征,将陡坡带划分为6种不同类型的砂砾岩扇体:冲积扇、近岸水下扇、扇三角洲、辫状河三角洲、陡坡深水浊积扇、近岸砂体前缘滑塌浊积扇。各类扇体的一般地震相特征为;
(1)一般产于箕状断陷盆地陡坡一侧的断层面附近,或古地貌的山谷出口。
(2)平面外形复杂,典型的呈扇形,顺倾向方向呈楔形,横界面为典型的丘状。(3)在顺倾向方向的地震剖面中,发散型的反射结构十分发育,或称帚状结构,收敛点指向扇端。在多期扇体相互叠置的剖面上,由于侧向上的差异压实作用和水流的冲刷剥蚀作用,扇体也可呈丘形反射特点。
(4)在倾向地震剖面上,地震反射的连续性是多变的。一般说,在各期扇体的顶面和远端的反射连续性强,在它的内侧靠近断层面附近,反射杂乱或无反射。在它的顶端,特别是靠上的扇体顶面,反射的连续性变差。
(5)在走向剖面上,典型扇体的外包络多呈丘状反射,背斜反射幅度最高部位多为扇中,内幕反射向扇端方向连续性变好,向扇根方向连续性变差。
典型扇体的地震相特征如下:
1.冲积扇体
这类扇体主要发育于陆相湖盆边缘,处于湖盆近物源区的峡谷出口处,由于古地形高差大,古气候干燥炎热,在湖盆边缘由季节性洪水搬运和堆积了一套粗碎屑物质,在平面上可分为扇根、扇中和扇端3个亚相。其最大特征为突发性强,以剥蚀充填为主,沉积厚度和面积相对较大。在顺延物源方向的地震剖面上,其反射外形呈宽缓的丘状反射,内部反射结构在扇体的不同亚相特征又有所不同,其中扇根和扇端亚相为空白和杂乱反射,而扇中亚相为低频的亚平行或发散结构(图6);在垂直物源方向的地震剖面上,其反射外形为倾角较陡的丘状反射,内部为杂乱一短波状反射结构,同相轴连续性差,反射振幅较强。
2.水下扇体
近岸水下扇体是在滨浅湖、半深湖区水下形成的扇形砾岩体。它主要形成于陆相断陷湖盆的扩张期,随着湖水范围的扩大,扇体也不断后退,并始终沿湖盆边缘紧邻山麓部位分布,平面上也分为扇根、扇中和扇端3个亚相,自下而上表现为扇根一扇中一扇端一浅湖一深湖沉积,构成向上变细变薄的垂向层序。近岸水下扇由于它整体没于水下,地震反射成层性和连续性好,但在陡坡带的不同部位所发育的扇体其地震相特点有所不同,通常在顺延物源方向的剖面上,由于与上覆地层岩性差异较大,扇体包络面反射振幅较强,其反射外形一般呈逐渐收敛的楔状体,内部反射呈小角度的发散结构(图7);在垂直物源方向的地震剖面上,扇体大都为丘状反射,内部反射为亚平行结构,同相轴为中等连续的中强振幅。
图6冲积扇体地震反射特征(垂直物源方向)图7近岸水下扇体地震反射特征(沿物源方向)
3.扇三角洲
扇三角洲是从邻近高地推进到稳定水体(海、湖)中去的冲积扇,其发育的基本条件是源区地势高、坡降陡,具有丰富的物源条件。其形成的动力机制比较复杂,陆上部分也可看作为洪积扇体,而水下部分与三角洲具有很大的相同性,平面上扇三角洲可分为3个亚相,即扇三角洲平原、扇二角洲前缘和前扇三角洲。具有典型的前积特征,一般呈斜交型前积结构,代表着水动力较强、物源供应充足的沉积环境(图8)。在垂直物源方向上,一般为宽缓的丘状反射,内部为低频的平行或亚平行结构,同相轴为连续性较好的强振幅反射。
4.辫状河三角洲
陆相湖盆演化萎缩期随着构造运动的由强变弱,湖水深度由深变浅,沿陡坡带断阶之上山地河流人口处附近,形成较为、规模较小、垂直湖盆长轴方向进积型为主的三角洲复合体。主要特点是短流程辫状河流携带粗碎屑物人湖,河口处坡降较大,碎屑物卸载快,
图8 扇只角洲地震反射特征(沿物源方向)图9辫状河三角洲砂体地震反射特征(沿物源方向)
前积作用明显。辫状河三角洲可分为三角洲平原亚相、三角洲前缘亚相、前三角洲亚相3个亚相。
尽管辫状河三角洲与曲流河三角洲在发育规模上存在较大差异,但在地震反射特征上却有很大的相似性。在地震剖面上,中间为斜交前积反射,前积反射一般代表辫状河三角洲前缘和前三角洲,顶积层一般代表着辫状河三角洲平原相沉积,地震剖面上多为中弱振幅反射同相轴,其产状为发散或亚平行;在底积层地震剖面上表现为中弱振幅、低到中等连续性,为亚平行或发散结构,如图9。在垂直物源方向剖面上为席状反射,内部为平行结构,反射振幅有变化。
5.陡坡深水浊积扇体
这类扇体为陆相断陷湖盆陡坡一侧特有,发育于断陷一深陷期的重力流沉积系列。主要发育于低位体系域和湖侵体系域中。季节性洪水期,在山高湖深、坡陡流急的条件下,沿主水流方向携带大量碎屑,受湖水顶托仍有继续向前搬运和下切的能力,将一些砂砾和泥质物继续向前搬运沉积,形成具有一定规模的扇体。
在盆地构造拉伸最强烈的时期,沿陡坡断裂带及其派生的次级小型断层,常发育一些断裂凹槽,在这些凹槽(或浊积水道)的前方,便发育了大量的以陡坡为物源的深水重力流沉积。在平面上,陡坡深水浊积扇体周围均被半深湖、深湖相泥岩、油页岩所包围。在地震剖面上,扇体包络面比较清楚,往往发育在同生断层的下降盘,其反射外形一般呈楔状或丘形,规模不同其反射外形又有差异,内部为小角度发散结构或波状、杂乱反射结构,如图10。据其岩电特征可划分为内扇、中扇、外扇3个亚相。其中内扇亚相为低频的杂乱反射;中扇亚相由于分选较好,所以成层性较好,同相轴较为连续;外扇亚相为同相轴振幅变弱、连续性变差。
6.近岸砂体前缘滑塌浊积扇体
在陡坡带斜坡之上,随着三角洲、水下扇等沉积物的不断堆积,厚度逐渐加大,促使前缘坡度不断增大。在重力、地震、断裂、洪水等因素的触发下,上述砂体前缘未固结的沉积物便会形成浊流再次搬运,于其前方沉积下来,形成再次滑塌浊积扇沉积系列。其单体规模一般较小,且与陡坡近岸水下扇、扇三角洲等有较好的伴生关系,平面上可划分为内扇、中扇、外扇3个亚相。
图10陡坡深水浊积扇体地震反射特征(垂直物源)图11近岸砂体前缘滑塌浊积扇体地震相
由于其沉积厚度不是很大,一般在10 ) 20 rtr左右,在地震frlJ面上大都呈两端尖灭的透镜状或扁楔形,反射振幅中等,连续性较好。该类浊积岩横剖面上,由于差异压实作用,同相轴有小幅度弯曲,呈不太明显的丘状反射,如图11)(二)三角洲砂体地震相
三角洲砂体在陆相沉积湖盆中,多发育在湖盆的长轴方向,三角洲沉积体通常位于湖、陆之间的过渡地带,其形成的先决条件是湖盆的沉降和携带有大量碎屑沉积物的河流注人。另外,其发育情况还受构造运动、气候、湖平面变化、河口水流性质及湖盆边缘斜坡坡度等多种因素影响。由于湖泊的水动力能量远小于海洋,湖成三角洲一般是以河流作用占优势,形成建设性三角洲,平面上呈鸟足状或锯齿状,如松辽盆地北部古三角洲、东营凹陷古三角洲、鄱阳湖的赣江三角洲等均是如此。三角洲具有典型的三层结构,即顶积层、前积层和底积层。在地震剖面上,三角洲顶底是具有近水平的顶积层和底积层,中间为斜交前积反射,前积反射的最下部由于多发育有浊积砂体,常见局部地层加厚,同相轴增多现象。前积反射一般代表三角洲前缘和前三角洲,三角洲前缘砂体主要位于斜交前积反射的上倾端;顶积层一般代表着三角洲平原相沉积,地震剖面上多为强振幅中等连续反射同相轴,其产状为平行或亚平行;底积层地震剖面上表现为弱振幅、低到中等连续性,为亚平行或发散结构,如图12。
图12三角洲砂体地震反射特征(沿物源方向)
(三)浊积砂体地震相
浊积砂体是在一套重力整体搬运机制下产生的浊积物,或称重力整体搬运沉积,这种沉积是受到自身的重力在超过沉积物内部粒间摩擦和吸附力造成的剪切应力后顺坡而下运动的产物。其规模大小不等。地震相特征如下(图13):
(1)在垂直走向方向的地震剖面上,存在地槽或峡谷。
(2)在走向剖面中呈丘形反射,内部反射为丘形或杂乱反射,它被上覆层上超。丘形反射可能是浊流沉积最直接的标志。
图13浊积砂体地震反射特征(倾向)
(3)倾向地震剖面上出现斜交(前积)反射的下面和朝盆地的方向,可能有浊流。
(四)滩坝砂体地震相
滩坝砂体发育于滨岸环境。滩是指低潮线到最大风暴线之间,向湖倾斜的斜坡上的砂砾堆积;坝则离岸有一定的距离,由砂堆成的长条形的水下降起。其成因主要由于在波浪带波浪能量降低,遇到近岸地形隆起或湾口处,速度减缓,释放出砂砾堆积形成。
图14滩坝砂体地震反射特征图15河道砂体地震反射特征(垂直走向)
滩坝砂岩储层的分布主要受构造活动、物源供应和湖水动力条件的控制,不同地区和不同的层位,储层发育和分布特点有较大的差别,砂体一般在构造作用形成的正向地带沉积。滩坝砂岩分布广泛,但由于滩坝砂岩单层厚度较薄,一般1
一3 m,最厚15 m左右,在地震上难以识别追踪。坝砂相对厚度大,物性好,分布局限,地震反射同相轴呈中振幅,中连续,短轴状不连续展布,在砂体发育区有同相轴小幅度弯曲或振幅异常现象,如图14。滩砂平面广泛分布,单层厚度薄,横向连续性较差,同相轴一般呈席状强反射。
(五)河道砂体地震相
河道砂体泛指充填在古河道中的砂体,包括河床充填砂体、点砂坝和心滩砂体。规模较大的河道砂体在地震剖面上常具有典型的反射特征,内部反射平行一亚平行或前积,强振幅、低频,向边缘上超,边界清楚。其外形为顶平底凹或顶凸底凹的透镜体状,内部杂乱或无反射,或为上超式充填反射。规模较小的河道砂体,由于厚度小
于地震分辨率,一般表现为短轴状的振幅异常(图15 )。在中浅层,分辨率较高的情况下,可与周围的泛滥平原等泥质沉积在地震反射结构上有较大差别,容易识别。利用水平切片技术和可视化透视技术可更好的解音J河流相砂体的平面分布。
四、地震相的解释
不同成因类型的砂体,具有特定的地震响应特征,但是由于地震相的多解性,在进行地震相的研究时,必须以取心井为基础,建立相关的地震相模式作为分类依据。地震相解释应掌握以下几个方面的原则(刘震,1997):地震相参数能量匹配;以岩心相为准;沉积体系匹配和沉积演化史匹配。
1.能量匹配准则
地震相参数中的反射结构和几何外形具有明显的沉积环境能量标志,而同一沉积体的反射结构和外形,必须是同一能量级。代表高能环境的反射结构和外形不能与代表低能环境的反射结构和外形匹配,反之亦然。例如,平行反射结构一般代表低能环境,发散结构代表从高能到低能变化,而前积结构表示高能环境。又如,席状外形反映或低能或高能环境,但丘状外形则一定为高能环境。
2.以岩心相为准
在没有钻井的探区内,只能通过地震相与沉积相的一般对应关系,与同类盆地的标准地震相模式对比,将地震相转换成沉积相。但是若在有井的探区,进行地震相解释时应尽可能结合钻井资料,用钻井的岩心相标定对应的地震相。
3.沉积体系匹配准则
沉积体系指成因上有联系的沉积相的共生组合,是平面相序的模式。在平面上一组地震相的分布所受沉积体系的控制表现在两个方面:一是沉积相类型的排列方式,即哪些沉积相可以相邻连接,而哪些沉积相绝对不能相邻连接;哪些沉积相可以组成一个相序排列,哪些沉积相很少能形成一种相序排列。二是沉积相排列的方向性,受沉积盆地的边界条件即构造背景所制约,从不同的边界向盆地内部延伸时,有些沉积相可以重复出现,而有些沉积相则不能再出现。例如在盆地发育的中期,在陡坡区向缓坡区方向上,陡岸处的近岸水下扇体一般不会在深湖区和缓坡区再出现。这种沉积体系的方向性有助于地震相的正确解释。
4.沉积演化史匹配准则
沉积相的类型具有明显的地质时代特征,盆地不同发育期所产生的相模式和沉积体系可能有巨大的差别。另外,像沃尔索相律指出的那样,只有当平面上能够彼此相邻的相,才有可能在垂向上(地质年代中)依次叠置。显然从一个层序(或亚层序)到另一个层序(或亚层序)的地震相分布遵循沉积环境演化规律,即沉积盆地发育阶段对沉积相的控制作用。