变频器调试与常见故障处理方法
变频器应用领域涉及到钢铁行业,化工行业,汽车行业,机床行业,电机机械行业,食品行业,造纸行业,水泥行业,矿业行业,石油行业,工厂建筑等,它促进企业实现了自动化,节约了能源,提高了产品质量和合格率以及生产率,延长了设备使用寿命。通过变频器的功能参数的设置调试,就可以实现相应的功能,一般都有数十甚至上百个参数供用户选择,在实际应用中,没必要对每一参数都进行设置和调试,多数只要采用出厂设定值即可。但有些参数由于和实际使用情况有很大关系,且有的还相互关联,因此要根据实际进行参数的设定和调试。变频器调试的好坏决定了变频器运行的稳定性、应用效果以及使用寿命等,最终关系到企业经济效益的大小,调好了可能大大节约费用,调不好可能损失惨重。以下是作者在普传变频器使用中的经验总结,希望能供其他用户参考,使变频器能更好地推广使用,为企业带来更大的经济效益。
1 变频器调试的步骤
变频器能否成功地应用到各种负载中,且长期稳定地运行,现场调试很关键,必须按照下述相应的步骤进行。
1.1 变频器的空载通电检验
1)将变频器的电源输入端子经过漏电保护开关接到电源上。
2)将变频器的接地端子接地。
3)确认变频器铭牌上的电压、频率等级与电网的是否相吻合,无误后送电。
4)主接触器吸合,风扇运转,用万用表AC 挡测试输入电源电压是否在标准规范内。
5)熟悉变频器的操作键盘键, 以普传科技变频器为例:
FWD为正向运行键,令驱动器正向运行;
REV为反向运行键,令驱动器反向运行;
ESC/DISPL为退出/显示键,退出功能项的数据更改,故障状态退出,退出子菜单或由功能项菜单进入状态显示菜单;
STOP/RESET 为停止复位键,令驱动器停止运行,异常复位,故障确认;
PRG为参数设定/移位键;
SET 为参数设定键,数值修改完毕保存,监视状态下改变监视对象;
▲▼为参数变更/加减键,设定值及参数变更使用,监视状态下改变给定频率;
JOG为寸动运行键,按下寸动运行,松开停止运行,不同变频器操作键的定义基本相同。
6)变频器运行到50 Hz,测试变频器U V W三相输出电压是否平衡。
7)断电完全没显示后,接上电机线。
1.2 变频器带电机空载运行
1)设置电机的基本额定参数,要综合考虑变频器的工作电流。
2)设定变频器的最大输出频率、基频、设置转矩特性。v/f类型的选择包括最高频率、基本频率和转矩类型等项目。最高频率是变频器—电动机系统可以运行的最高频率,由于变频器自身的最高频率可能较高,当电动机容许的最高频率低于变频器的最高频率时,应按电动机及其负载的要求进行设定。基本频率是变频器对电动机进行恒功率控制和恒转矩控制的分界线,应按电动机的额定电压进行设定。转矩类型指负载是恒转矩负载还是变转矩负载。用户根据变频器使用说明书中的v/f类型图和负载特点,选择其中的一种类型。通用变频器均备有多条v/f曲线供用户选择,用户在使用时应根据负载的性质选择合适的v/f 曲线。为了改善变频器启动时的低速性能,使电机输出的转矩能满足生产负载启动的要求,要调整启动转矩。在异步电机变频调速系统中,转矩的控制较复杂。在低频段,由于电阻、漏电抗的影响不容忽略,若仍保持v/f为常数,则磁通将减小,进而减小了电机的输出转矩。为此,在低频段要对电压进行适当补偿以提升转矩。一般变频器均由用户进行人工设定补偿。普传变频器则为用户提供两种选择,即42种v/f提升方式,自动转矩提升。
3)变频器的频率设置及运行控制均为键盘模式,按运行键、停止键,观察电机是否能正常地启动、停止。
4)熟悉变频器运行发生故障时的保护代码,观察热保护继电器的出厂值,观察过载保护的设定值,需要时可以修改。变频器的使用人员可以按变频器的使用说明书对变频器的电子热继电器功能进行设定。电子热继电器的门限值定义为电动机和变频器两者的额定电流的比值,通常用百分数表示。当变频器的输出电流超过其容许电流时,变频器的过电流保护将切断变频器的输出。因此,变频器电子热继电器的门限最大值不超过变频器的最大容许输出电流。
5)变频器运行到满频,测试输出电压及电流,看是否与键盘监视的值相吻合。
1.3 带载试运行
1)手动操作变频器面板上的运行停止键,观察电机运行停止过程及变频器的监视,看是否有异常现象。
2)如果启动、停止电机过程中变频器出现过流保护动作,应重新设定加速、减速时间。电机在加、减速时的加速度取决于加速转矩,而变频器在启、制动过程中的频率变化率是用户设定的。若电机转动惯量或电机负载变化,按预先设定的频率变化率升速或减速时,有可能出现加速转矩不够,从而造成电机失速,即电机转速与变频器输出频率不协调,从而造成过电流或过电压。因此,需要根据电机转动惯量和负载合理设定加、减速时间,使变频器的频率变化率
能与电机转速变化率相协调。检查此项设定是否合理的方法是先按经验选定加、减速时间进行设定,若在启动过程中出现过流,则可适当延长加速时间;若在制动过程中出现过流,则适当延长减速时间。另一方面,加、减速时间不宜设定太长,时间太长将影响生产效率,特别是频繁启、制动时。
3)如果变频器仍然存在运行故障,应尝试增加最大电流的保护值,但是不能取消保护,应留有至少10%~20%的保护余量。
4)如果变频器运行故障还是发生,应更换更大一级功率的变频器。
5)如果变频器带动电机在启动过程中达不到预设速度,可能有下述两种情况。
(1)系统发生机电共振,可以从电机运转的声音进行判断。采用设置频率跳跃值的方法,可以避开共振点。一般变频器能设定三级跳跃点。v/f 控制的变频器驱动异步电机时,在某些频率段,电机的电流、转速会发生振荡,严重时系统无法运行,甚至在加速过程中出现过电流保护动作使得电机不能正常启动,在电机轻载或转动惯量较小时更为严重。普通变频器均备有频率跨跳功能,用户可以根据系统出现振荡的频率点,在v/f曲线上设置跨跳点及跨跳宽度。当电机加速时可以自动跳过这些频率段,保证系统能够正常运行。
(2)电机的转矩输出能力不够,不同品牌的变频器出厂参数设置不同,在相同的条件下,带载能力不同,也可能因变频器控制方法不同,造成电机的带载能力不同;或因系统的输出效率不同,造成带载能力会有所差异。对于这种情况,可以增加转矩提升量的值。如果达不到,可用手动转矩提升功能,不要设定过大,电机这时的温升会增加。对于风机和泵类负载,应减少降转矩的曲线值。
1.4 变频器与上位机相连进行系统调试
设定完成后,如果系统中有上位机,将变频器的控制线直接与上位机控制线相连,并将变频器的操作模式改为端子控制。根据上位机系统的需要,调定变频器接收频率信号端子的量程0~5 V或0~10 V,以及变频器对模拟频率信号采样的响应速度。如果需要另外的监视表头,应选择模拟输出的监视量,并调整变频器输出监视量端子的量程。
2 变频器常用功能参数
因各类型变频器功能有差异,而相同功能参数的名称也不一致,为叙述方便,本文以普传变频器基本参数名称为例。由于基本参数是各类型变频器几乎都有的,完全可以做到触类旁通。
2.1 加减速时间
加速时间就是输出频率从0上升到最大频率所需时间,减速时间是指从最大频率下降到0 所需时间。通常用频率设定信号上升、下降来确定加减速时间。在电动机加速时须频率设定的上升率以防止过电流,减速时则下降率以防止过电压。加速时间设定要求是将加速电流在变频器过电流容量以下,不使过流失速而引起变频器跳闸;减速时间设定要点是防止直流滤波电路电压过高,不使再生过压失速而使变频器跳闸。加减速时间可根据负载计算出来,但在调试中常采取按负载和经验先设定较长加减速时间,通过启、停电动机观察有无过电流、过电压报警;然后将加减速设定时间逐渐缩短,以运转中不发生报警为原则,重复操作几次,
便可确定出最佳加减速时间。
2.2 转矩提升
转矩提升又叫转矩补偿,是为了补偿因电动机定子绕组电阻所引起的低速时转矩降低,而把低频率范围f/v 增大的方法。设定为自动时,可使加速时的电压自动提升以补偿起动转矩,使电动机加速顺利进行。如采用手动补偿时,根据负载特性,尤其是负载的起动特性,通过试验可选出较佳曲线。对于变转矩负载,如选择不当会出现低速时的输出电压过高,而浪费电能的现象,甚至还会出现电动机带负载起动时电流大,而转速上不去的现象。
2.3 电子热过载保护
本功能为保护电动机过热而设置,它是变频器内CPU 根据运转电流值和频率计算出电动机的温升,从而进行过热保护。本功能只适用于“一拖一”场合,而在“一拖多”时,则应在各台电动机上加装热继电器。
电子热保护设定值(%)=[电动机额定电流(A)/变频器额定输出电流(A)]×100%。
2.4 频率
频率即设置变频器输出频率的上、下限幅值,是为了防止误操作或外接频率设定信号源出故障,而引起输出频率的过高或过低而导致设备损坏的一种保护功能。在应用中按实际情况设定即可。此功能还可作限速使用,如有的皮带输送机,由于输送物料不太多,为减少机械和皮带的磨损,可采用变频器驱动,并将变频器上限频率设定为某一频率值,这样就可使皮带输送机运行在一个固定、较低的工作速度上。
3 变频器调试时常见问题处理方法
3.1 外部电磁干扰的处理方法
如果变频器周围存在干扰源,它们将通过辐射或电源线侵入变频器的内部,引起控制回路误动作,造成工作不正常或停机,严重时甚至损坏变频器。提高变频器自身的抗干扰能力固然重要,但由于受装置成本,在外部采取噪声抑制措施,消除干扰源显得更合理,更必要。以下几项措施是对噪声干扰实行“三不”原则的具体方法:
1)变频器周围所有继电器、接触器的控制线圈上须加装防止冲击电压的吸收装置,如RC吸收器;
2)尽量缩短控制回路的配线距离,并使其与主线路分离;
3)指定采用屏蔽线的回路,必须按规定进行,若线路较长,应采用合理的中继方式;
4)变频器接地端子应按规定设置,不能同电焊,动力接地混用;
5)变频器输入端安装噪声滤波器,避免由电源进线引入干扰。
以上即为不输出干扰、不传送干扰、不接受干扰的“三不”原则。
3.2 变频器对周边设备的影响及故障防范
变频器的安装使用也将对其他电气设备产生影响,有时甚至导致其他电气设备故障。因此,对这些影响因素进行分析探讨,并研究应该采取哪些措施是非常必要的。
由于目前的变频器几乎都采用PWM控制方式,这样的脉冲调制方式使得变频器运行时在电源侧产生高次谐波电流,造成电压波形畸变,对供电系统产生严重影响,通常可采用以下处理措施:
1)采用专用变压器对变频器供电,与供电系统隔离;
2)在变频器输入侧加装滤波电抗器,降低高次谐波分量。
对于有进相电容器的场合,高次谐波电流将使电容器发热严重,为此必须在电容前串接电抗器,以减小谐波分量。
此外,由于变频器的软件开发更加完善,可以预先在变频器的内部设置各种故障防止措施,并使故障化解后仍能保持继续运行,例如:
1) 对自由停车过程中的电机进行再起动;
2) 2)对内部故障自动复位并保持连续运行。
4 普传科技PI7000变频器在注塑机上的应用调试案例
注塑机是在对各种塑料进行加热、融熔、搅拌、增压后,将塑料流体注入模具腔内,完成工件一次注塑成型的设备。它的工序过程基本是相同的,每一个工序都需要不同的压力和流量,也就是说被加工的工件不都是在最大压力或流量下工作的,传统方式其压力和流量是靠压力比例阀和流量比例阀来调节的。而油泵电机则是恒速运转,从而造成能量的浪费。若用变频器来调节电机(油泵)的转速,实时满足压力和流量的需求,这样既经济又实用。有关单位已成功地使用普传变频器改造了注塑机,取得了显著的经济效益。因此,用变频器改造注塑机节能是值得向广大用户推广的。根据实际经验,中、小型注塑机用变频器改造后的节电率一般在20%~60%。注塑机信号一般为主控制器流量阀或压力阀输出0~1 A的直流信号,给变频器控制变频器的输出频率,以达到根据工艺需要调节油压的目的,实现节能。变频器选用普传PI7000Z 系列专用变频器,过载能力强,具有流量、压力双反馈信号接口,按注塑工艺要求,取双信和叠加来控制主油泵电机速度。PI7000 系列变频器具有注塑机所需要的控制方式,诸如
1)如在控制时注塑机流量阀或压力阀输出只有一路0~1A直流信号时,信号直接接入控制板I2 或V2(正信号)和V3(负信号,GND)口,电流信号经过控制板I2或V2和V3之间3个串联的1Ω/2W电阻取样,将取样电压供给CPU来控制变频器的输出。
3) 如注塑机主控制器输出两路0~1A直流信号,第一路信号接到控制板I2(正信号)和V3(负信号,GND)口,第二路信号接到控制板V2(正信号)和V3(负信号,GND)口,电流信号经过控制板I2/V2和V3之间3个串联的1Ω/2W电阻取样,将取样电压供给CPU来控制变频器的输出。
3)变频器参数设置。
(1)从V2口输入0~1A直流信号时,F04=1,F69的001=0.00 V(V2 输入最小电压),002=3.00V(V2输入最大电压)。
(2)从I2口输入0~1A直流信号时,F04=2,F69的004=0.00 mA(I2 输入最小电流)、005=20.00 mA(I2输入最大电流)。
(3)从V2/I2 同时输入两路0~1A直流信号时,F04=3,F69的001=0.00V(V2输入最小电压)、002=3.00V(V2输入最大电压),F69的004=0.00 mA(V2输入最小电流)、005=20.00 mA(I2输入最大电流)。
具体连线见图1。
(4)F09=2.0(加速时间2 s)。
(5)F10=2.0(减速时间2 s)。
(6)其他功能参数采用默认值。
控制电路简单,目前变频器在注塑机上的应用不仅是一台变频器对一台电动机的简单运行方式,大型注塑机还有多泵集中控制方式,在实际使用中必须注意以下几点:
(1)要充分了解所选用变频器的技术性能、使用要求、内部功能并充分发挥其特长;
(2)要充分了解被使用设备的工艺要求、技术性能、使用要求包括负荷等;
(3)要充分了解被使用设备的现有控制电路,液压油路、各种附件的功能以不变或最少更动原有设备的零部件为原则,如何巧妙取得控制信号,实现现有设备与变频器的最简单的结合是十分重要的;
(4)变频器有时会对注塑机的温度控制造成谐波干扰,应采取一定措施,如保证设备良好接地,变频器的输入、输出线绕磁环并加上高频吸收电容后再接入,对注塑机的控制电源采取隔离等。
除此以外还要考虑环境、操作简便、易于维护等因素。注塑机的控制采用电脑板(单片机),其压力设定,时序设定可按工艺条件人为给定,利用电脑板输出电量值控制压力比例调节阀,从而调节主油泵的压力大小。它的输出是个线性的mA量值电流,经电流转换器变成4~20 mA,直接接入到变频器控制输入端,从而改变变频器的输出频率,即改变主油泵电动机的转速达到调压、节电双重作用。该控制方案具有简便可靠、不需更改原电路、调节方便、控制精确等特点。
5 结语
变频器在应用调试时一定要按照调试步骤进行,调试人员必须充分理解变频器的功能参数并设置好,充分了解负载的工艺要求,充分考虑现场环境,防患于未然,争取一次性调试成功,使之能够长期稳定地运行,避免不必要的损失。采用变频器改造注塑机,调试简单,具有显著的经济效益,值得推广。 |
变频器功能参数很多,一般都有数十甚至上百个参数供用户选择。实际应用中,没必要对每一参数都进行设置和调试,多数只要采用出厂设定值即可。但有些参数由于和实际使用情况有很大关系,且有的还相互关联,因此要根据实际进行设定和调试。
因各类型变频器功能有差异,而相同功能参数的名称也不一致,为叙述方便,本文以富士变频器基本参数名称为例。由于基本参数是各类型变频器几乎都有的,完全可以做到触类旁通。
一 加减速时间
加速时间就是输出频率从0上升到最大频率所需时间,减速时间是指从最大频率下降到0所需时间。通常用频率设定信号上升、下降来确定加减速时间。在电动机加速时须频率设定的上升率以防止过电流,减速时则下降率以防止过电压。
加速时间设定要求:将加速电流在变频器过电流容量以下,不使过流失速而引起变频器跳闸;减速时间设定要点是:防止平滑电路电压过大,不使再生过压失速而使变频器跳闸。加减速时间可根据负载计算出来,但在调试中常采取按负载和经验先设定较长加减速时间,通过起、停电动机观察有无过电流、过电压报警;然后将加减速设定时间逐渐缩短,以运转中不发生报警为原则,重复操作几次,便可确定出最佳加减速时间。
二 转矩提升
又叫转矩补偿,是为补偿因电动机定子绕组电阻所引起的低速时转矩降低,而把低频率范围f/V增大的方法。设定为自动时,可使加速时的电压自动提升以补偿起动转矩,使电动机加速顺利进行。如采用手动补偿时,根据负载特性,尤其是负载的起动特性,通过试验可选出较佳曲线。对于变转矩负载,如选择不当会出现低速时的输出电压过高,而浪费电能的现象,甚至还会出现电动机带负载起动时电流大,而转速上不去的现象。
三 电子热过载保护
本功能为保护电动机过热而设置,它是变频器内CPU根据运转电流值和频率计算出电动机的温升,从而进行过热保护。本功能只适用于“一拖一”场合,而在“一拖多”时,则应在各台电动机上加装热继电器。
电子热保护设定值(%)=[电动机额定电流(A)/变频器额定输出电流(A)]
×100%。 四 频率 即变频器输出频率的上、下限幅值。频率是为防止误操作或外接频率设定信号源出故障,而引起输出频率的过高或过低,以防损坏设备的一种保护功能。在应用中按实际情况设定即可。此功能还可作限速使用,如有的皮带输送机,由于输送物料不太多,为减少机械和皮带的磨损,可采用变频器驱动,并将变频器上限频率设定为某一频率值,这样就可使皮带输送机运行在一个固定、较低的工作速度上。 五 偏置频率 有的又叫偏差频率或频率偏差设定。其用途是当频率由外部模拟信号(电压或电流)进行设定时,可用此功能调整频率设定信号最低时输出频率的高低,如图1。有的变频器当频率设定信号为0%时,偏差值可作用在0~fmax范围内,有的变频器(如明电舍、三垦)还可对偏置极性进行设定。如在调试中当频率设定信号为0%时,变频器输出频率不为0Hz,而为xHz,则此时将偏置频率设定为负的xHz即可使变频器输出频率为0Hz。 六 频率设定信号增益 此功能仅在用外部模拟信号设定频率时才有效。它是用来弥补外部设定信号电压与变频器内电压(+10v)的不一致问题;同时方便模拟设定信号电压的选择,设定时,当模拟输入信号为最大时(如10v、5v或20mA),求出可输出f/V图形的频率百分数并以此为参数进行设定即可;如外部设定信号为0~5v时,若变频器输出频率为0~50Hz,则将增益信号设定为200%即可。 七 转矩 可分为驱动转矩和制动转矩两种。它是根据变频器输出电压和电流值,经CPU进行转矩计算,其可对加减速和恒速运行时的冲击负载恢复特性有显著改善。转矩功能可实现自动加速和减速控制。假设加减速时间小于负载惯量时间时,也能保证电动机按照转矩设定值自动加速和减速。 驱动转矩功能提供了强大的起动转矩,在稳态运转时,转矩功能将控制电动机转差,而将电动机转矩在最大设定值内,当负载转矩突然增大时,甚至在加速时间设定过短时,也不会引起变频器跳闸。在加速时间设定过短时,电动机转矩也不会超过最大设定值。驱动转矩大对起动有利,以设置为80~100%较妥。 制动转矩设定数值越小,其制动力越大,适合急加减速的场合,如制动转矩设定数值设置过大会出现过压报警现象。如制动转矩设定为0%,可使加到主电容器的再生总量接近于0,从而使电动机在减速时,不使用制动电阻也能减速至停转而不会跳闸。但在有的负载上,如制动转矩设定为0%时,减速时会出现短暂空转现象,造成变频器反复起动,电流大幅度波动,严重时会使变频器跳闸,应引起注意。 八 加减速模式选择 又叫加减速曲线选择。一般变频器有线性、非线性和S三种曲线,通常大多选择线性曲线;非线性曲线适用于变转矩负载,如风机等;S曲线适用于恒转矩负载,其加减速变化较为缓慢。设定时可根据负载转矩特性,选择相应曲线,但也有例外,笔者在调试一台锅炉引风机的变频器时,先将加减速曲线选择非线性曲线,一起动运转变频器就跳闸,调整改变许多参数无效果,后改为S曲线后就正常了。究其原因是:起动前引风机由于烟道烟气流动而自行转动,且反转而成为负向负载,这样选取了S曲线,使刚起动时的频率上升速度较慢,从而避免了变频器跳闸的发生,当然这是针对没有起动直流制动功能的变频器所采用的方法。 九 转矩矢量控制 矢量控制是基于理论上认为:异步电动机与直流电动机具有相同的转矩产生机理。矢量控制方式就是将定子电流分解成规定的磁场电流和转矩电流,分别进行控制,同时将两者合成后的定子电流输出给电动机。因此,从原理上可得到与直流电动机相同的控制性能。采用转矩矢量控制功能,电动机在各种运行条件下都能输出最大转矩,尤其是电动机在低速运行区域。 现在的变频器几乎都采用无反馈矢量控制,由于变频器能根据负载电流大小和相位进行转差补偿,使电动机具有很硬的力学特性,对于多数场合已能满足要求,不需在变频器的外部设置速度反馈电路。这一功能的设定,可根据实际情况在有效和无效中选择一项即可。 与之有关的功能是转差补偿控制,其作用是为补偿由负载波动而引起的速度偏差,可加上对应于负载电流的转差频率。这一功能主要用于定位控制。 十 节能控制 风机、水泵都属于减转矩负载,即随着转速的下降,负载转矩与转速的平方成比例减小,而具有节能控制功能的变频器设计有专用V/f模式,这种模式可改善电动机和变频器的效率,其可根据负载电流自动降低变频器输出电压,从而达到节能目的,可根据具体情况设置为有效或无效。 要说明的是,九、十这两个参数是很先进的,但有一些用户在设备改造中,根本无法启用这两个参数,即启用后变频器跳闸频繁,停用后一切正常。究其原因有:(1)原用电动机参数与变频器要求配用的电动机参数相差太大。(2)对设定参数功能了解不够,如节能控制功能只能用于V/f控制方式中,不能用于矢量控制方式中。(3)启用了矢量控制方式,但没有进行电动机参数的手动设定和自动读取工作,或读取方法不当。 |