最新文章专题视频专题问答1问答10问答100问答1000问答2000关键字专题1关键字专题50关键字专题500关键字专题1500TAG最新视频文章推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37视频文章20视频文章30视频文章40视频文章50视频文章60 视频文章70视频文章80视频文章90视频文章100视频文章120视频文章140 视频2关键字专题关键字专题tag2tag3文章专题文章专题2文章索引1文章索引2文章索引3文章索引4文章索引5123456789101112131415文章专题3
当前位置: 首页 - 正文

二次函数的图像教学设计

来源:动视网 责编:小OO 时间:2025-09-28 01:02:24
文档

二次函数的图像教学设计

二次函数的图像(2)教学目标:1、经历二次函数图像平移的过程;理解函数图像平移的意义。2、了解,,三类二次函数图像之间的关系。3、会从图像的平移变换的角度认识型二次函数的图像特征。教学重点:从图像的平移变换的角度认识型二次函数的图像特征。教学难点:对于平移变换的理解和确定,学生较难理解。教学设计:一、知识回顾二次函数的图像和特征:1、名称;2、顶点坐标;3、对称轴;4、当时,抛物线的开口向,顶点是抛物线上的最点,图像在x轴的(除顶点外);当时,抛物线的开口向,顶点是抛物线上的最点图像在x轴的(
推荐度:
导读二次函数的图像(2)教学目标:1、经历二次函数图像平移的过程;理解函数图像平移的意义。2、了解,,三类二次函数图像之间的关系。3、会从图像的平移变换的角度认识型二次函数的图像特征。教学重点:从图像的平移变换的角度认识型二次函数的图像特征。教学难点:对于平移变换的理解和确定,学生较难理解。教学设计:一、知识回顾二次函数的图像和特征:1、名称;2、顶点坐标;3、对称轴;4、当时,抛物线的开口向,顶点是抛物线上的最点,图像在x轴的(除顶点外);当时,抛物线的开口向,顶点是抛物线上的最点图像在x轴的(
二次函数的图像(2)

教学目标:

1、经历二次函数图像平移的过程;理解函数图像平移的意义。

2、了解,,三类二次函数图像之间的关系。

3、会从图像的平移变换的角度认识型二次函数的图像特征。

教学重点:从图像的平移变换的角度认识型二次函数的图像特征。

教学难点:对于平移变换的理解和确定,学生较难理解。

教学设计:

一、知识回顾

二次函数的图像和特征: 

1、名称                ;2、顶点坐标              ;3、对称轴                ;

4、当时,抛物线的开口向    ,顶点是抛物线上的最   点,图像在x轴的    (除顶点外);当时,抛物线的开口向    ,顶点是抛物线上的最   点图像在x轴的    (除顶点外)。

二、合作学习

在同一坐标系中画出函数图像, 的图像。

(1)请比较这三个函数图像有什么共同特征?

(2)顶点和对称轴有什么关系?

(3)图像之间的位置能否通过适当的变换得到? 

(4)由此,你发现了什么?

三、探究二次函数和图像之间的关系

1、结合学生所画图像,引导学生观察与的图像位置关系,直观得出的图像的图像。

教师可以采取以下措施:①借助几何画板演示几个对应点的位置关系 ,如:

(0,0)(-2,0)

(2,2)(0,2);

(-2,2)(-4,2)

②也可以把这些对应点在图像上用彩色粉笔标出,并用带箭头的线段表示平移过程。

2、用同样的方法得出的图像的图像。

3、请你总结二次函数y=a(x+ m)2的图象和性质. 

()的图像的图像。

函数的图像的顶点坐标是(-m,0),对称轴是直线x=-m

4、做一做 

(1)、

抛物线开口方向对称轴顶点坐标
y =2(x+3)2

y = -3(x-1)2

y = -4(x-3)2

(2)、填空:

①、由抛物线y=2x²向         平移      个单位可得到y= 2(x+1)2

②、函数y= -5(x -4)2的图象。可以由抛物线          向      平移 4 个单位而得到的。

3、对于二次函数,请回答下列问题:

①把函数的图像作怎样的平移变换,就能得到函数的图像?

②说出函数的图像的顶点坐标和对称轴。

第3题的解答作如下启发:这里的m是什么数?大于零还是小于零?应当把的图像向左平移还是向右平移?在此同时用平移的方法画出函数的大致图像(事先画好函数的图像),借助图像有学生回答问题。

五、 探究二次函数和图像之间的关系

1、在上面的平面直角坐标系中画出二次函数的图像。

首先引导学生观察比较与的图像关系,直观得出:的图像的图像。(结合多媒体演示)

再引导学生刚才得到的的图像与的图像之间的位置关系,由此得出:只要把抛物线先向左平移2个单位,在向上平移3个单位,就可得到函数的图像。

2、做一做:请填写下表:

函数解析式图像的对称轴图像的顶点坐标
3、总结的图像和图像的关系

()的图像的图像的图像。

的图像的对称轴是直线x=-m,顶点坐标是(-m,k) 。

口诀:(m、k)正负左右上下移     ( m左加右减 k上加下减)

4、练习:课本第34页课内练习地1、2题 

六、谈收获:

1、函数的图像和函数图像之间的关系。

2、函数的图像在开口方向、顶点坐标和对称轴等方面的性质。

七、布置作业

课本第35页作业题 

预习题:对于函数,请回答下列问题:

(1)对于函数的图像可以由什么抛物线,经怎样平移得到的?

(2)函数图像的对称轴、顶点坐标各是什么?

文档

二次函数的图像教学设计

二次函数的图像(2)教学目标:1、经历二次函数图像平移的过程;理解函数图像平移的意义。2、了解,,三类二次函数图像之间的关系。3、会从图像的平移变换的角度认识型二次函数的图像特征。教学重点:从图像的平移变换的角度认识型二次函数的图像特征。教学难点:对于平移变换的理解和确定,学生较难理解。教学设计:一、知识回顾二次函数的图像和特征:1、名称;2、顶点坐标;3、对称轴;4、当时,抛物线的开口向,顶点是抛物线上的最点,图像在x轴的(除顶点外);当时,抛物线的开口向,顶点是抛物线上的最点图像在x轴的(
推荐度:
  • 热门焦点

最新推荐

猜你喜欢

热门推荐

专题
Top