
一、填空(共20分)(共10题;共20分)
1.把3吨货物平均分成5堆,每堆占总货物的 ________,其中两堆货物重________吨。
2.×________= ÷________= -________=________×2 =1
3.小红同学用圆规画了一个直径是12厘米的圆,那么画这个圆时圆规两脚之间的距离是________厘米,这个圆的面积是________平方厘米。
4.如果下面整个长方形表示100%,则阴影部分用百分数表示是________%,阴影部分是空白部分的________%。
5.看图,王明家在学校的南偏东________°,距离________米处。
6.甲乙两队修一条道路,甲队单独修12天能修完,乙队单独修18天能修完。如果两队合修这条道路,不管这条道路有多长,完成的时间都是________天。
7.计算比值:0.125: =________ 50kg:0.5t=________
8.分数乘分数的过程和结果可以通过画长方形图清楚表示。下图表示的分数乘法算式是________。
9.一个长方形的长是宽的2倍,那么这个长方形的周长与它的长的最简整数比是________,比值是________。
10.甲、乙、丙三人合作完成一项工作。实际甲完成的工作量是乙、丙两人完成工作量的 ,丙完成的工作量与甲、乙两人完成工作量的比是2:3。如果按完成工作量分配所得报酬,甲能得报酬120元,那么乙能得报酬________元,丙能得报酬________元。
二、选择(共10分)(共10题;共10分)
11.小明家在学校南偏东50°,距离1500米处;小红家在学校东偏南40°,距离1200米处。小明家与小红家的距离是( )。
A. 300米 B. 1200米 C. 2700米 D. 无法确定的
三、计算与操作(共40分)(共5题;共40分)
12.口算。
×4= ÷3= + = 0.8÷ =
9÷ = × = 5÷5%= -0.5=
13.递等式计算。
① + + +
② ×(0.6+ )
③ +8÷
④4.3× +2.7÷
⑤0.8÷( -0.5)
⑥ ×(9- - )
⑦ ÷0.7-0.7÷
⑧ ×5.7+ ×3.3-
⑨(2-0.3)÷
14.解方程。
(1)x+ x=60
(2)(9-x)× =
(3)=1
15.
(1)如果上圆表示1,请在圆中用阴影表示 + + + 。
(2)通过上图,你发现可以怎样非常简便计算 + + + 的和?写出你的计算方法和结果。
(3)如果在上图中继续你的操作,会发现是 + + + + ……的和越来越接近于________。
16.小强向20位同学了解他们最喜欢的运动,然后用得到的数据制作成下面的扇形图。
(1)同学们最喜欢哪种运动?哪两种项目的爱好者一样多?
(2)聪聪就同一话题征询了更多的同学,结果画出的扇形统计图与小强的一样。把计算后的结果填入表内。
| 项目 | 球类 | 游泳 | 骑自行车 | 跳绳 | 合计 |
| 人数 | ________ | ________ | 45 | ________ | ________ |
17.在学习百分数的时候,小明与小红对“桌子的高度 米,这里的 可不可以写成93%?”存在争议。小明认为: =93%,当然可以;小红认为:百分数与分母是100的分数不完全相同,不可以。对这个问题,你的观点是什么?请说明你的理由。
18.某种手机的自动化生产线在手机机板上插入每个零件的时间仅为 秒。3分钟可以插人多少个零件?
19.一个长方体木块长、宽、高分别是10cm、8cm、6cm。如果用它锯成一个最大的正方体,体积要比原来减少百分之几?
20.一个草原上有一座长方形的房子,房子周围都是草场,在房子一角拴着一头羊(如右图),求这只羊最多能吃到草的面积。
21.挖一条水渠,王伯伯每天挖整条水渠的 ,李叔叔每天挖整条水渠的 。两人合作3天后,李叔叔对王伯伯说:“老王,你比我多挖了120米。”这条水渠还有多少米没有挖?
22.利用下面的图形和所学的面积计算的知识,我们可以很快发现(a+b)2=a2+2ab+b2。同样,我们可以用类似图形和所学的面积计算知识发现(a+b)(a+c)的计算公式。请你画出(a+b)(a+c)的图形(b≠c),用阴影表示b×c的积,并写出(a+b)(a+c)的计算公式。
答案解析部分
一、填空(共20分)
1.【答案】 ;
【解析】【解答】解:每堆占总货物的, 其中两堆货物重×2=吨。
故答案为:;。
【分析】每堆占总货物的几分之几=, 每堆货物的重量=, 所以其中两堆货物的重量=每堆货物的重量×2。
2.【答案】 ;;;
【解析】【解答】解:×=÷=-=×=1。
故答案为:;;;。
【分析】乘积为1的两个数互为倒数;被除数和除数相同时,商为1。
3.【答案】 6;113.04
【解析】【解答】解:12÷2=6厘米,所以画这个圆时圆规两脚之间的距离是6厘米,6×6×3.14=113.04平方厘米,所以这个圆的面积是113.04平方厘米。
故答案为:6;113.04。
【分析】圆规两脚之间的距离是所画圆的半径,半径=直径÷2;
圆的面积=πr2。
4.【答案】 60;150
【解析】【解答】解:100%×=60%,所以阴影部分用百分数表示是60%,60%÷(100%-60%)=150%,所以阴影部分是空白部分的150%。
故答案为:60;150。
【分析】从图中可以看出阴影部分占整个正方形的, 所以阴影部分用百分数表示的数=整个长方形表示的数×阴影部分占整个正方形的几分之几;
阴影部分是空白部分的百分之几=阴影部分表示的数÷空白部分表示的数。
5.【答案】 40;4000
【解析】【解答】解:王明家在学校的南偏东40°,距离4×1000=4000米处。
故答案为:40;4000。
【分析】正东和正南之间是90°的夹角,所以王明家在学校的南偏东偏转的度数=90°-王明家在学校的东偏南偏转的度数;
王明家与学校之间有4格,所以距离=4×每个格子表示的长度。
6.【答案】
【解析】【解答】解:1÷(+)=, 所以完成的时间都是天。
故答案为:。
【分析】将这条路的长度看成单位“1”,那么两队合修完成用的天数=1÷(甲队的效率+乙队的效率),其中甲队的效率=1÷甲队单独修完成的天数,乙队的效率=1÷乙队单独修完成的天数。
7.【答案】 ;
【解析】【解答】解:0.125:=0.125÷=;50kg:0.5t=50kg:500kg=。
故答案为:;。
【分析】1t=1000kg;计算比值时,用比的前项除以后项即可,其中当比的前项和后项单位不一致时,要统一之后再计算。
8.【答案】 × =
【解析】【解答】解:图中表示的分数乘法算式是×=。
故答案为:×=。
【分析】从图中可以看出,向左的斜线占整个长方形的, 而向右的斜线占向左的斜线的, 所以写成乘法算式是×=。
9.【答案】 3:1;3
【解析】【解答】解:长:宽=2:1,所以周长:长=(2+1)×2:2=6:2=3:1=3。
故答案为:3:1。
【分析】长方形的周长=(长+宽)×2,因为长方形的长是宽的2倍,所以这个长方形的长占2份,宽占1份,据此作答即可。
10.【答案】 168;192
【解析】【解答】解:甲=(丙+乙),丙:(甲+乙)=2:3,可计算得乙=甲,丙=甲,故甲:乙:丙=1::, 甲=120,乙=168,丙=192。
故答案为:168;192。
【分析】因为甲完成的工作量是乙、丙两人完成工作量的, 那么甲=(丙+乙),丙完成的工作量与甲、乙两人完成工作量的比是2:3,那么丙:(甲+乙)=2:3,据此求得甲、乙、丙三人的工作量之比,根据甲得到的报酬解得乙和丙得到的报酬。
二、选择(共10分)
11.【答案】 A
【解析】【解答】解:1500-1200=300米,所以小明家与小红家的距离是300米。
故答案为:A。
【分析】学校的南偏东50°和东偏南40°是同一个方向,所以小明家与小红家的距离=小明家到学校的距离-小红家到学校的距离。
三、计算与操作(共40分)
12.【答案】 ×4=3 ÷3= + = 0.8÷ =3.2
9÷ =15 × = 5÷5%=100 -0.5=
【解析】【分析】小数乘整数,分母不变,用分子乘整数即可,能约分的要约分;
分数乘分数,用分母相乘的积做分子,分母相乘的积作分母,能约分的要约分;
除以一个不为0的数,等于乘这个数的倒数。
13.【答案】 ① + + +
=( + ) +( + )
=1+1
=2
② ×(0.6+ )
= ×0.6+ ×
=0.5+
=1
③ +8÷
= +8÷
= +8×8
=
④4.3× +2.7÷
=4.3× +2.7÷
=4.3× +2.7×
=(4.3+2.7)×
=7×
=3
⑤0.8÷( -0.5)
=0.8÷(0.8-0.5)
=0.8÷0.3
=
⑥ ×(9- - )
= ×[9-( - )]
= ×(9-1)
= ×8
=5
⑦ ÷0.7-0.7÷
= × -0.7×
=1-0.9
=0.1
⑧ ×5.7+ ×3.3-
= ×(5.7+3.3-1)
= ×8
=6
⑨(2-0.3)÷
=1.7÷
=1.7×
=
=
=
【解析】【分析】在分数的连加计算中,如果有分母相同的分数,可以利用加法交换律和结合律进行简便计算;
在没有小括号,既有加减法又有乘除法的计算中,要先算乘除法,再算加减法;
在有小括号的计算中,要先算小括号里面的,再算小括号外面的;
乘法分配律:a×b+a×c=a×(b+c)。
14.【答案】 (1) x+x=60
解:x=60
x÷=60÷
x=36
(2)(9-x)×=
解:9-x=3
x=6
(3) =1
解:5+x=6-x
2x=1
x=
【解析】【分析】解方程时,先把相同的项放在一起计算,即把含有x的项放在等号的左边,把常数项放在等号的右边,然后等号两边同时除以x前面的系数,就可以解得x的值。
15.【答案】 (1)
(2)解:(1- )+( - )+( - )+( - )=1- =
(3)1
【解析】【分析】(1)根据分数的意义作答即可;
(2)观察式子中每个加数的特点,即每个加数的分母是前一个分数分母的2倍,而且每一个加数等于前一个加数减去这个加数本身,据此作答即可;
(3)这个式子的结果=1-最后一个加数,因为最后一个加数会越来越小,越来越接近0,所以差会越来越接近1。
16.【答案】 (1)解:球类是同学们最喜欢的运动,跳绳和骑自行车的爱好者一样多。
(2)54;36;45;180
【解析】【分析】(1)根据扇形统计图的特征,哪种运动占的百分比越大,那么喜欢这种运动的人数越多;
(2)球类的人数=骑自行车的人数÷骑自行车的人数占的百分比×球类占的百分比,游泳的人数=骑自行车的人数÷骑自行车的人数占的百分比×游泳占的百分比;跳绳的人数=骑自行车的人数,合计就是把每种运动的人数加起来即可。
四、解决问题(每小题5分,共30分)
17.【答案】 解:不可以,由于此处 是表示高度带单位,而93%是百分数不能带单位。
【解析】【分析】百分数是指一个量是另一个量的百分之几,不是具体指某一个量,据此作答即可。
18.【答案】 解:3分钟=3×60=180秒
180÷ =2000(个)
答:3分钟可以插入200个零件。
【解析】【分析】先把单位进行换算,即3分钟=180秒,3分钟可以插入零件的个数=180÷插入每个零件需要的时间,据此代入数据作答即可。
19.【答案】 解:最大的正方体边长为6cm,(10×8×6-6×6×6)÷(10×8×6)=(480-216)÷480=2÷480=55%,
答:体积要比原来减少55%。
【解析】【分析】把一个长方体锯成一个最大的正方体,那么这个正方体的棱长是长方体的长、宽、高中的最短的那条边,长方体的体积=长×宽×高,正方体的体积=棱长×棱长×棱长,所以体积比原来减少百分之几=(长方体的体积-正方体的体积)÷长方体的体积,据此代入数据作答即可。
20.【答案】 解: ×πR2+ ×πr2= ×3.14×122+ ×3.14×(12-8)2=112×3.14=351.68(m2)
答:这只羊最多能吃到草的面积为351.68平方米。
【解析】【分析】如图所示环形所示面积即为羊能吃到草的面积。
21.【答案】 解:120÷[3×( - )=120÷[3× ]=120÷ =2400(米)
2400×[1-3×( + )]=240×(1- )=2400× =1800(米)
答;这条水渠还有1800米没有挖。
【解析】【分析】这条水渠的总长度=3天王伯伯比李叔叔多挖的米数÷3天王伯伯比李叔叔多挖几分之几,其中3天王伯伯比李叔叔多挖几分之几=3×(王伯伯挖每天挖了几分之几-李叔叔挖每天挖了几分之几),那么这个水渠没有挖的长度=这条水渠的总长度×(1-两人3天一共挖了几分之几),其中两人3天一共挖了几分之几=3×(王伯伯每天挖整条水渠的几分之几+李叔叔每天挖整条水渠的几分之几),据此代入数据作答即可。
22.【答案】 解:(a+b)(a+c)=a2+ac+ab+bc
【解析】【分析】先将长方体分成4份,即边长为a的正方形、长为b宽为a的长方形,长为c宽为a的长方形和长为c宽为b的长方形,所以(a+b)(a+c)=a2+ac+ab+bc。
