最新文章专题视频专题问答1问答10问答100问答1000问答2000关键字专题1关键字专题50关键字专题500关键字专题1500TAG最新视频文章推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37视频文章20视频文章30视频文章40视频文章50视频文章60 视频文章70视频文章80视频文章90视频文章100视频文章120视频文章140 视频2关键字专题关键字专题tag2tag3文章专题文章专题2文章索引1文章索引2文章索引3文章索引4文章索引5123456789101112131415文章专题3
当前位置: 首页 - 正文

武汉中考二次函数综合题训练及答案

来源:动视网 责编:小OO 时间:2025-09-27 21:54:03
文档

武汉中考二次函数综合题训练及答案

二次函数中考综合题1、如图11,抛物线与轴相交于A、B两点(点A在点B右侧),过点A的直线交抛物线于另一点C,点C的坐标为(-2,6).(1)求a的值及直线AC的函数关系式;(2)P是线段AC上一动点,过点P作y轴的平行线,交抛物线于点M,交x轴于点N.①求线段PM长度的最大值;②在抛物线上是否存在这样的点M,使得△CMP与△APN相似?如果存在,请直接写出所有满足条件的点M的坐标(不必写解答过程);如果不存在,请说明理由.解:(1)由题意得6=a(-2+3)(-2-1)∴a=-21分∴抛物线
推荐度:
导读二次函数中考综合题1、如图11,抛物线与轴相交于A、B两点(点A在点B右侧),过点A的直线交抛物线于另一点C,点C的坐标为(-2,6).(1)求a的值及直线AC的函数关系式;(2)P是线段AC上一动点,过点P作y轴的平行线,交抛物线于点M,交x轴于点N.①求线段PM长度的最大值;②在抛物线上是否存在这样的点M,使得△CMP与△APN相似?如果存在,请直接写出所有满足条件的点M的坐标(不必写解答过程);如果不存在,请说明理由.解:(1)由题意得6=a(-2+3)(-2-1)∴a=-21分∴抛物线
二次函数中考综合题

1、如图11,抛物线与轴相交于A、B两点(点A在点B右侧),过点A的直线交抛物线于另一点C,点C的坐标为(-2,6).

(1)求a的值及直线AC的函数关系式;

(2)P是线段AC上一动点,过点P作y轴的平行线,交抛物线于点M,交x轴于点N.

①求线段PM长度的最大值;

②在抛物线上是否存在这样的点M,使得△CMP与△APN相似?如果存在,请直接写出所有满足条件的点M的坐标(不必写解答过程);如果不存在,请说明理由. 

解:(1)由题意得 6=a(-2+3)(-2-1)∴a=-21分

∴抛物线的函数解析式为y=-2(x+3)(x-1)与x轴交于B(-3,0)、A(1,0)

设直线AC为y=kx+b,则有0=k+b

6=-2k+b解得 k=-2

b=2

∴直线AC为y=-2x+2

(2)①设P的横坐标为a(-2≤a≤1),则P(a,-2a+2),M(a,-2a2-4a+6)4分

∴PM=-2a2-4a+6-(-2a+2)=-2a2-2a+4=-2a2+a+14+92

=-2a+122+92

∴当a=-12时,PM的最大值为92

②M1(0,6)

M2(-14,678) 

2、如图9,已知抛物线y=x2–2x+1的顶点为P,A为抛物线与y轴的交点,过A与y轴垂直的直线与抛物线的另一交点为B,与抛物线对称轴交于点O′,过点B和P的直线l交y轴于点C,连结O′C,将△ACO′沿O′C翻折后,点A落在点D的位置.

(1) (3分) 求直线l的函数解析式;

(2) (3分) 求点D的坐标;

(3) (3分) 抛物线上是否存在点Q,使得S△DQC= S△DPB? 若存在,求出所有符合条件的点Q的坐标;若不存在,请说明理由.

(1) 配方,得y=(x–2)2 –1,∴抛物线的对称轴为直线x=2,顶点为P(2,–1) .    1分

取x=0代入y=x2 –2x+1,得y=1,∴点A的坐标是(0,1).由抛物线的对称性知,点A(0,1)与点B关于直线x=2对称,∴点B的坐标是(4,1).    2分

设直线l的解析式为y=kx+b(k≠0),将B、P的坐标代入,有

解得∴直线l的解析式为y=x–3.    3分

(2) 连结AD交O′C于点E,∵ 点D由点A沿O′C翻折后得到,∴ O′C垂直平分AD.

由(1)知,点C的坐标为(0,–3),∴ 在Rt△AO′C中,O′A=2,AC=4,∴ O′C=2.

据面积关系,有 ×O′C×AE=×O′A×CA,∴ AE=,AD=2AE=.

作DF⊥AB于F,易证Rt△ADF∽Rt△CO′A,∴,

∴ AF=·AC=,DF=·O′A=,    5分

又 ∵OA=1,∴点D的纵坐标为1–= –,∴ 点D的坐标为(,–).    6分

(3) 显然,O′P∥AC,且O′为AB的中点,

∴ 点P是线段BC的中点,∴ S△DPC= S△DPB .

故要使S△DQC= S△DPB,只需S△DQC=S△DPC .

    7分

过P作直线m与CD平行,则直线m上的任意一点与CD构成的三角形的面积都等于S△DPC ,故m与抛物线的交点即符合条件的Q点.

容易求得过点C(0,–3)、D(,–)的直线的解析式为y=x–3,

据直线m的作法,可以求得直线m的解析式为y=x–.

令x2–2x+1=x–,解得 x1=2,x2=,代入y=x–,得y1= –1,y2=,

因此,抛物线上存在两点Q1(2,–1)(即点P)和Q2(,),使得S△DQC= S△DPB.    9分

(仅求出一个符合条件的点Q的坐标,扣1分)

3、如图,在平面直角坐标系中,矩形AOBC在第一象限内,E是边OB上的动点(不包括端点),作∠AEF = 90,使EF交矩形的外角平分线BF于点F,设C(m,n).

(1)若m = n时,如图,求证:EF = AE;

(2)若m≠n时,如图,试问边OB上是否还存在点E,使得EF = AE?若存在,请求出点E的坐标;若不存在,请说明理由.

(3)若m = tn(t>1)时,试探究点E在边OB的何处时,使得EF =(t + 1)AE成立?并求出点E的坐标.

(1)由题意得m = n时,AOBC是正方形.

如图,在OA上取点C,使AG = BE,则OG = OE.

∴ ∠EGO = 45,从而 ∠AGE = 135.

由BF是外角平分线,得 ∠EBF = 135,∴ ∠AGE =∠EBF.

∵ ∠AEF = 90,∴ ∠FEB +∠AEO = 90.

在Rt△AEO中,∵ ∠EAO +∠AEO = 90,

∴ ∠EAO =∠FEB,∴ △AGE≌△EBF,EF = AE.

(2)假设存在点E,使EF = AE.设E(a,0).作FH⊥x轴于H,如图.

由(1)知∠EAO =∠FEH,于是Rt△AOE≌Rt△EHF.

∴ FH = OE,EH = OA.

∴ 点F的纵坐标为a,即 FH = a.

由BF是外角平分线,知∠FBH = 45,∴ BH = FH = a.

又由C(m,n)有OB = m,∴ BE = OB-OE = m-a,

∴ EH = m-a + a = m.

又EH = OA = n, ∴ m = n,这与已知m≠n相矛盾.

因此在边OB上不存在点E,使EF = AE成立.

(3)如(2)图,设E(a,0),FH = h,则EH = OH-OE = h + m-a.

由 ∠AEF = 90,∠EAO =∠FEH,得 △AOE∽△EHF,

∴ EF =(t + 1)AE等价于 FH =(t + 1)OE,即h =(t + 1)a,

且,即,

整理得 nh = ah + am-a2,∴ .

把h =(t + 1)a 代入得 ,

即 m-a =(t + 1)(n-a).

而 m = tn,因此 tn-a =(t + 1)(n-a).

化简得 ta = n,解得.

∵ t>1, ∴ <n<m,故E在OB边上.

∴当E在OB边上且离原点距离为处时满足条件,此时E(,0).

4、已知:直线与轴交于A,与轴交于D,抛物线与直线交于A、E两点,与轴交于B、C两点,且B点坐标为 (1,0).

(1)求抛物线的解析式;

(2)动点P在轴上移动,当△PAE是直角三角形时,求点P的坐标.

(3)在抛物线的对称轴上找一点M,使的值最大,求出点M的坐标.

(1)将A(0,1)、B(1,0)坐标代入得

    解得 

∴抛物线的解折式为.    (2分)

(2)设点E的横坐标为m,则它的纵坐标为

则E(,).

又∵点E在直线上,

∴.   

解得(舍去),.

∴E的坐标为(4,3).    (4分)

(Ⅰ)当A为直角顶点时

过A作交轴于点,设.

    易知D点坐标为(,0).

由得

即,∴.

∴.    (5分)

(Ⅱ)同理,当为直角顶点时,点坐标为(,0).    (6分)

(Ⅲ)当P为直角顶点时,过E作轴于,设.

由,得.

由得.

解得,.

∴此时的点的坐标为(1,0)或(3,0).    (8分)

综上所述,满足条件的点P的坐标为(,0)或(1,0)或(3,0)或(,0)

(Ⅲ)抛物线的对称轴为.    (9分)

∵B、C关于对称,

∴.

要使最大,即是使最大.

由三角形两边之差小于第三边得,当A、B、M在同一直线上时的值最大.    (10分)

易知直线AB的解折式为.

∴由   得   ∴M(,-).    (11分)

5、在平面直角坐标系xOy中,已知抛物线y=与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,其顶点为M,若直线MC的函数表达式为,与x轴的交点为N,且COS∠BCO=。

(1)求此抛物线的函数表达式;

    (2)在此抛物线上是否存在异于点C的点P,使以N、P、C为顶点的三角形是以NC为一条直角边的直角三角形?若存在,求出点P的坐标:若不存在,请说明理由;

    (3)过点A作x轴的垂线,交直线MC于点Q.若将抛物线沿其对称轴上下平移,使抛物线与线段NQ总有公共点,则抛物线向上最多可平移多少个单位长度?向下最多可平移多少个单位长度?

6、已知:抛物线与x轴交于A、B两点,与y轴交于点C. 其中点A在x轴的负半轴上,点C在y轴的负半轴上,线段OA、OC的长(OA(1)求A、B、C三点的坐标;

(2)求此抛物线的解析式;

(3)若点D是线段AB上的一个动点(与点A、B不重合),

过点D作DE∥BC交AC于点E,连结CD,设BD的长为

m,△CDE的面积为S,求S与m的函数关系式,并写出自

变量m的取值范围. S是否存在最大值?若存在,求出最

大值并求此时D点坐标;若不存在,请说明理由.

解:(1)∵OA、OC的长是x2-5x+4=0的根,OA∴OA=1,OC=4

∵点A在x轴的负半轴,点C在y轴的负半轴

∴A(-1,0)  C(0,-4)

∵抛物线的对称轴为

∴由对称性可得B点坐标为(3,0)

∴A、B、C三点坐标分别是:A(-1,0),B(3,0),C(0,-4)

(2)∵点C(0,-4)在抛物线图象上   ∴

将A(-1,0),B(3,0)代入得解之得

∴ 所求抛物线解析式为:

(3)根据题意,则

在Rt△OBC中,BC==5

∵,∴△ADE∽△ABC

过点E作EF⊥AB于点F,则sin∠EDF=sin∠CBA=

∴EF=DE==4-m 

∴S△CDE=S△ADC-S△ADE

=(4-m)×4(4-m)( 4-m)

=m2+2m(0∵S=(m-2)2+2, a=<0

∴当m=2时,S有最大值2.

∴点D的坐标为(1,0). 

7、如图9,已知正比例函数和反比例函数的图象都经过点.

(1)求正比例函数和反比例函数的解析式;

(2)把直线OA向下平移后与反比例函数的图象交于点,求的值和这个一次函数的解析式;

(3)第(2)问中的一次函数的图象与轴、轴分别交于C、D,求过A、B、D三点的二次函数的解析式;

(4)在第(3)问的条件下,二次函数的图象上是否存在点E,使四边形OECD的面积与四边形OABD的面积S满足:?若存在,求点E的坐标;若不存在,请说明理由.

解:(1)设正比例函数的解析式为,

因为的图象过点,所以

,解得.

这个正比例函数的解析式为.    (1分)

设反比例函数的解析式为.

因为的图象过点,所以

,解得.

这个反比例函数的解析式为.    (2分)

(2)因为点在的图象上,所以

,则点.    (3分)

设一次函数解析式为.

因为的图象是由平移得到的,

所以,即.

又因为的图象过点,所以

,解得,

一次函数的解析式为.    (4分)

(3)因为的图象交轴于点,所以的坐标为.

设二次函数的解析式为.

因为的图象过点、、和,

所以    (5分)          解得

这个二次函数的解析式为.    (6分)

(4)交轴于点,点的坐标是,

如图所示, 

假设存在点,使.

四边形的顶点只能在轴上方, ,

,.    (7分)

在二次函数的图象上,

解得或.

当时,点与点重合,这时不是四边形,故舍去,

点的坐标为.    (8分)

8、如图,已知抛物线经过,两点,顶点为.

(1)求抛物线的解析式;

(2)将绕点顺时针旋转90°后,点落到点的位置,将抛物线沿轴平移后经过点,求平移后所得图象的函数关系式;

(3)设(2)中平移后,所得抛物线与轴的交点为,顶点为,若点在平移后的抛物线上,且满足的面积是面积的2倍,求点的坐标.

解:(1)已知抛物线经过,

   解得

所求抛物线的解析式为.    2分

(2), 

可得旋转后点的坐标为    3分

当时,由得,

可知抛物线过点

将原抛物线沿轴向下平移1个单位后过点.

平移后的抛物线解析式为:.    5分

(3)点在上,可设点坐标为

将配方得,其对称轴为.    6分

①当时,如图①,

此时

点的坐标为.    8分

②当时,如图②

同理可得

此时

点的坐标为.

综上,点的坐标为或.-----------------10分

9、如图(16),在平面直角坐标系中,开口向上的抛物线与轴交于两点,为抛物线的顶点,为坐标原点.若的长分别是方程的两根,且

(1)求抛物线对应的二次函数解析式;

(2)过点作交抛物线于点,求点的坐标;

(3)在(2)的条件下,过点任作直线交线段于点求到直线的距离分别为,试求的最大值.

解:(1)解方程得

,而

则点的坐标为,点的坐标为

    1分

过点作轴于则为的中点.

的坐标为

又因为

的坐标为    2分

令抛物线对应的二次函数解析式为

抛物线过点

则得

故抛物线对应的二次函数解析式为(或写成)    4分

(2)    5分

令点的坐标为则有    6分

点在抛物线上,    7分

化简得解得(舍去).

故点的坐标为    8分

(3)由(2)知而

    9分

过作

    10分

    11分

即此时的最大值为    13分

10、如图12,已知二次函数 的图象与x轴的正半轴相交于点A、B,

与y轴相交于点C,且.

    (1)求c的值;

    (2)若△ABC的面积为3,求该二次函数的解析式;    

    (3)设D是(2)中所确定的二次函数图象的顶点,试问在直线AC上是否存在一点P使△PBD的周长最小?若存在,求出点P的坐标;若不存在,请说明理由.

11、(2008四川省广安市)如图10,已知抛物线经过点(1,-5)和(-2,4)

(1)求这条抛物线的解析式.

(2)设此抛物线与直线相交于点A,B(点B在点A的右侧),平行于轴的直线与抛物线交于点M,与直线交于点N,交轴于点P,求线段MN的长(用含的代数式表示).

(3)在条件(2)的情况下,连接OM、BM,是否存在的值,使△BOM的面积S最大?若存在,请求出的值,若不存在,请说明理由.

12、(重庆市)已知:如图,在平面直角坐标系中,矩形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=2,OC=3.过原点O作∠AOC的平分线交AB于点D,连接DC,过点D作DE⊥DC,交OA于点E.

(1)求过点E、D、C的抛物线的解析式;

(2)将∠EDC绕点D按顺时针方向旋转后,角的一边与y轴的正半轴交于点F,另一边与线段OC交于点G.如果DF与(1)中的抛物线交于另一点M,点M的横坐标为,那么EF=2GO是否成立?若成立,请给予证明;若不成立,请说明理由;

(3)对于(2)中的点G,在位于第一象限内的该抛物线上是否存在点Q,使得直线GQ与AB的交点P与点C、G构成的△PCG是等腰三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.

解:(1)由已知,得,,

.    (1分)

设过点的抛物线的解析式为.

将点的坐标代入,得.

将和点的坐标分别代入,得

    (2分)

解这个方程组,得

故抛物线的解析式为.    (3分)

(2)成立.    (4分)

点在该抛物线上,且它的横坐标为,

点的纵坐标为.    (5分)

设的解析式为,

将点的坐标分别代入,得

   解得

的解析式为.    (6分)

,.    (7分)

过点作于点,

则.

又,

.    (8分)

(3)点在上,,,则设.

,,.

①若,则,

解得. ,此时点与点重合.

.    (9分)

②若,则,

解得,,此时轴.

与该抛物线在第一象限内的交点的横坐标为1,

点的纵坐标为.

.    (10分)

③若,则,

解得,

,此时,是等腰直角三角形.

过点作轴于点,则,设,.

.解得(舍去).

.    (12分)

综上所述,存在三个满足条件的点,

即或或.

        

文档

武汉中考二次函数综合题训练及答案

二次函数中考综合题1、如图11,抛物线与轴相交于A、B两点(点A在点B右侧),过点A的直线交抛物线于另一点C,点C的坐标为(-2,6).(1)求a的值及直线AC的函数关系式;(2)P是线段AC上一动点,过点P作y轴的平行线,交抛物线于点M,交x轴于点N.①求线段PM长度的最大值;②在抛物线上是否存在这样的点M,使得△CMP与△APN相似?如果存在,请直接写出所有满足条件的点M的坐标(不必写解答过程);如果不存在,请说明理由.解:(1)由题意得6=a(-2+3)(-2-1)∴a=-21分∴抛物线
推荐度:
  • 热门焦点

最新推荐

猜你喜欢

热门推荐

专题
Top