最新文章专题视频专题问答1问答10问答100问答1000问答2000关键字专题1关键字专题50关键字专题500关键字专题1500TAG最新视频文章推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37视频文章20视频文章30视频文章40视频文章50视频文章60 视频文章70视频文章80视频文章90视频文章100视频文章120视频文章140 视频2关键字专题关键字专题tag2tag3文章专题文章专题2文章索引1文章索引2文章索引3文章索引4文章索引5123456789101112131415文章专题3
当前位置: 首页 - 正文

天文望远镜的发展与自然科学的进步

来源:动视网 责编:小OO 时间:2025-09-27 22:01:15
文档

天文望远镜的发展与自然科学的进步

海南大学《现代自然科学技术概论》考核作业课程代码:974105学分:2.0学分学年度:2010-2011学年度姓名:曹国宝性别:男学号:20080W0102学院和班级:材料与化工学院08级理科实验班天文望远镜的发展与自然科学的进步曹国宝(海南大学材料与化工学院海口市570228)摘要:本文通过对各种天文望远镜的发明及简介,使大家了解天文望远镜的发展简史.并阐述其在自然科学发展史上所作出的贡献。指出各种天文望远镜的优点和不足之处,最后研究了其未来发展趋势并作出展望。关键词:自然科学天文望远镜光学
推荐度:
导读海南大学《现代自然科学技术概论》考核作业课程代码:974105学分:2.0学分学年度:2010-2011学年度姓名:曹国宝性别:男学号:20080W0102学院和班级:材料与化工学院08级理科实验班天文望远镜的发展与自然科学的进步曹国宝(海南大学材料与化工学院海口市570228)摘要:本文通过对各种天文望远镜的发明及简介,使大家了解天文望远镜的发展简史.并阐述其在自然科学发展史上所作出的贡献。指出各种天文望远镜的优点和不足之处,最后研究了其未来发展趋势并作出展望。关键词:自然科学天文望远镜光学
海南大学《现代自然科学技术概论》考核作业

课程代码:974105

学分:2.0学分

学年度:2010-2011学年度

姓名:曹国宝

性别:男

学号:20080W0102

学院和班级:材料与化工学院08级理科实验班

天文望远镜的发展与自然科学的进步

曹国宝

(海南大学材料与化工学院  海口市  570228)

摘要:本文通过对各种天文望远镜的发明及简介,使大家了解天文望远镜的发展简史.并阐述其在自然科学发展史上所作出的贡献。指出各种天文望远镜的优点和不足之处,最后研究了其未来发展趋势并作出展望。

关键词:自然科学 天文望远镜 光学望远镜 射电望远镜 空间望远镜

Astronomical Telescopes’ Progress And Natural Science’s Developement

Cao Guobao

(Hai Nan University material and chemical college  Hai Kou  570228)

Abstracts: This article offer a brief introduction for various astronomical telescopes in different epoch and thus give a impression of the telescope’s history. Then point out how can the telescope pay a contribution for our science. Moreover, illustrate different kinds of astronomical telescope’s strength and short backs. At last , how astronomical telescope will develop in the future is given.

Keywords: natural science  optical telescope  astronomical optics telescope  radio telescope

space telescope

一.引言

1609年, 意大利物理和天文学家伽俐略首次使用望远镜观测到了人眼看不到的宇宙中的一些天体, 开创了天文学研究的新纪元. 随着自然科学技术的不断进步, 到牛顿时代, 人们可以研制出更大更复杂的望远镜, 使天文学研究进入了一个繁荣时期, 发现了很多微弱的恒星并计算出恒星之间的距离. 19世纪后, 人们利用光谱仪收集天体发出的光谱, 得出了有关天体运动和化学成分的信息. 进入20世纪后, 人们研制出越来越大、性能越来越好的望远镜, 可观测到更远距离的天体.在地面上使用光学望远镜观测时, 天体发出的光经过大气层, 会受到大气扰动的影响. 为了减小这一影响, 发展了自适应光学[1]。

与此同时人类对宇宙的探测不但从平地转移到高山地带, 同还借助气球、飞机、火箭和卫星将天文望远镜带到大气层的上部和大气层以外。应该说人类探索宇宙奥秘和自然科学发展的过程就是天文望远镜不断发展完善的过程, 这个过程没有结点, 因此人类的技术进步也就没有终极。天文望远镜的发展始终和技术的发展和进步密切的联系着。天文望远镜的技术一直代表着当时的自然科学技术发展的最高水平。

本文将通过对天文望远镜的分类的介绍,使大家了解各种天文望远镜的发展历史, 现状和发展趋势。并通过对国内外各个著名天文望远镜的简单介绍来说明天文望远镜的各种先进技术以及发展焦点。通过本文的总结,使大家能对天文望远镜的过去和现状有更清晰的认识,能为大家了解和研究天文望远镜有所帮助, 为其它科学的技术发展提供借鉴。

二.天文望远镜的分类

一般来说, 光学望远镜、射电望远镜、空间望远镜被称为天文望远镜的三个里程碑。所有的天文望远镜均可以看作为微弱电磁辐射的收集器[1]。

由于地球大气有选择地吸收天体辐射, 只透过某些波段的天体辐射而使其到达地面, 因此, 地面观测到的只是大气“ 窗口” 波段范围内的天体辐射, 若要观测天体在其他波段的辐射,则需到高空和太空进行。为了观察电磁波所有频段的天文信息,人类必须在地球上的不同高度来进行观察。因此, 由于工作范围以及空间位置的不同, 天文望远镜分为地面望远镜和空间望远镜。由于工作频段的不同,天文望远镜分为光学望远镜、红外望远镜、紫外望远镜、射电望远镜、x 射线和, 伽马射线望远镜等[2]。

三.光学望远镜

无疑,早期天文望远镜的发展主要是涉及光学望远镜的发展。而光学望远镜又主要分为反射式和折射式望远镜[3]。

(一).反射式望远镜

1608年,荷兰眼镜商人汉斯·里帕席为海军制造出世界上第一架望远镜,帮助击退来犯的西班牙侵略者。

次年,也就是1609年,近代自然科学的开创者伽利略制造了一架6倍望远镜。接着,他又将自制的20倍望远镜的物镜对准夜空。就这样,伽利略成为天文望远镜的发明者,他也从自己制作的望远镜观察了月球陨石坑,木星的卫星以及成千上万其他星体,动摇了当时错误的“地心说”和“日心说”,因此1609年也成为近代天文学的起点。

伽利略把望远镜指向月球,看见月球上坑坑洼洼,表面布满了环形山。就在地球近旁,便有一个与之相仿的世界,这无疑降低了地球在宇宙中的特殊地位。他又看见太阳上不时出现的黑斑——太阳黑子,日复一日地从太阳东边缘移向西边缘。这就明白地告诉人们,巨大的太阳在不停地自转着,那么,远比太阳小得多的地球也在自转还有什么可大惊小怪的呢?伽利略从望远镜里看到,银河原来是由密密麻麻的大片恒星聚集在一起形成的,而且他还看见了前人从未见过的大量比6等星更暗的星星,这就雄辩地说明了古希腊天文学家并不通晓有关宇宙的全部知识,所以不应盲目接受古希腊人的地心宇宙体系。看来,宇宙远比任何前人可能想到的更加浩瀚和复杂。

  接着,伽利略又把他的望远镜指向行星。1610年1月,他从望远镜中看到木星附近有4个光点,夜复一夜,它们的位置在木星两侧来回移动,但总是大致处在一条直线上,并且始终离木星不远。伽利略断定,这些小亮点都在稳定地环绕木星转动,犹如月球绕着地球转动一般。不久,开普勒听到这一消息,就把这些新天体称为“卫星”,英语中称为satellite,此词源于拉丁语,原指那些趋炎附势以求宠幸之徒。也许,开普勒觉得它们老是围在大神朱匹特——木星身旁,活像一些攀附权贵的小人。如今,这4个天体依然统称为“伽利略卫星”。

  伽利略卫星是人类在太阳系中发现的第一批新天体。古希腊人关于一切天体都环绕地球转动的想法显然是错了。保守分子们硬说这是透镜的瑕疵造成的假象。但是,不久就有一位名叫西蒙?马里乌斯的德国天文学家宣布,他也通过望远镜看见了这些卫星。马里乌斯沿袭用神话人物命名天体的古老传统,按离木星由近到远的次序,依次将这4颗卫星命名为伊俄(Io)、欧罗巴(Europa)、加尼米德(Ganymede)和卡利斯托(Callisto)。他们都是希腊神话中的人物,深受大神宙斯宠爱。如今在汉语中,它们依次称为木卫一、木卫二、木卫三和木卫四。

伽利略的望远镜以光线的折射为基础,称为“折射望远镜”。利用光线的反射现象制成的,则称为“反射望远镜”。人们发现,通过折射望远镜观测天体时,星像周围会出现一种彩色的环,它使观测目标变得模糊了。这种现象叫做色差,伽利略不明白它的起因,当时也无法消除它。

直到1757年,杜隆通过研究玻璃和水的折射和色散,建立了消色差透镜的理论基础,并用冕牌玻璃和火石玻璃制造了消色差透镜。从此,消色差折射望远镜完全取代了长镜身望远镜。但是,由于技术方面的,很难铸造较大的火石玻璃,在消色差望远镜的初期,最多只能磨制出10厘米的透镜。

威廉.歇尔于1773年用买来的透镜造出了自己的第一架折射望远镜,焦距1.2米、可放大40倍。接着,他又造了一架9米多长的折射望远镜,并且租了一架反射望远镜来进行对比,结果对后者极为满意。从此,他就潜心于制造反射望远镜了。

  到1776年,威廉已经制造出焦距3米和6米的反射望远镜。有了精良的武器,他便从1779年开始“巡天”观测。他特别关注近距双星,即天空中看起来靠得特别近的两颗星。两年后他编出第一份双星表,共列有269对双星。

  1781年3月13日,威廉在人类历史上破天荒地发现了一颗比土星更遥远的新行星——天王星。乔治三世为自己的汉诺威同乡取得如此辉煌的成就满心欢喜,便宽恕了赫歇尔早年擅离的过错,并任命其为御用天文学家,从此威廉就不再靠音乐谋生而专致于天文研究了。

  1782年下半年,威廉应国王邀请,移居位于伦敦西面、温莎东侧的白金汉郡达切特。4年后,他编制出第二份双星表,其中包含434对新的双星。他努力研究恒星的空间分布,成了研究银河系结构的先驱。他于1784年向皇家学会宣读了论文《从一些观测来研究天体的结构》,首次提出银河系形状似盘,银河就是盘平面的标志。在广阔无垠的恒星世界中,太阳系只是微不足道的沧海一粟。早先,哥白尼将地球逐出了“宇宙的中心”;如今,赫歇尔又将太阳逐出了这一特殊地位。

  1786年,他发表了《一千个新星云和星团表》,除了梅西叶和其他人已列出的以外,还收录了他本人的全部新发现。在所有这些繁重的工作中,威廉都得到了卡罗琳的全力帮助。移居达切特后,卡罗琳便完全从事天文工作了。威廉亲自教她观测,并给她一具小望远镜去搜索彗星。

在反射式望远镜发明后的近200年中,反射材料一直是其发展的障碍:铸镜用的青铜易于腐蚀,不得不定期抛光,需要耗费大量财力和时间,而耐腐蚀性好的金属,比青铜密度高且十分昂贵。1856年德国化学家尤斯图斯·冯·利比希研究出一种方法,能在玻璃上涂一薄层银,经轻轻的抛光后,可以高效率地反射光。这样,就使得制造更好、更大的反射式望远镜成为可能。 

    1918年末,口径为254厘米的胡克望远镜投入使用,这是由海尔主持建造的。天文学家用这架望远镜第一次揭示了银河系的真实大小和我们在其中所处的位置,更为重要的是,哈勃的宇宙膨胀理论就是用胡克望远镜观测的结果。 

    二十世纪二、三十年代,胡克望远镜的成功激发了天文学家建造更大反射式望远镜的热情。1948年,美国建造了口径为508厘米望远镜,为了纪念卓越的望远镜制造大师海尔,将它命名为海尔望远镜。从设计到制造完成海尔望远镜经历了二十多年,尽管它比胡克望远镜看得更远,分辨能力更强,但它并没有使人类对宇宙的有更新的认识。正如阿西摩夫所说:"海尔望远镜(1948年)就象半个世纪以前的叶凯士望远镜(17年)一样,似乎预兆着一种特定类型的望远镜已经快发展到它的尽头了"。在1976 年前苏联建造了一架600厘米的望远镜,但它发挥的作用还不如海尔望远镜,这也印证了阿西摩夫所说的话。 

    反射式望远镜有许多优点,比如:没有色差,能在广泛的可见光范围内记录天体发出的信息,且相对于折射望远镜比较容易制作。但由于它也存在固有的不足:如口径越大,视场越小,物镜需要定期镀膜等。 

(二).折射式望远镜

    19世纪初,年轻的德国光学家夫琅和费制成一块直径24厘米的优质透镜,用它造出了当时世界上最大最好的折射望远镜。望远镜装在一根轴上,使之可以俯仰;轴又装在一个轮子上,使之可沿水平方向转动。夫琅和费为它设计的平衡装置非常精妙,以至于用一个手指就可以推动这架镜身长4.3米的折射镜[4]。

  也是在19世纪上半期,一个只有几十年历史的新兴国家——美国加入了天文望远镜的竞赛。一位钟表匠威廉.克兰奇.邦德自学成材,于1847年被任命为哈佛学院天文台台长。他是天体照相技术的先驱,致力于将天体的像聚焦到照相底片上,而不是聚焦在眼睛的视网膜上。1849年12月18日,他用一架公众捐款建造的38厘米折射望远镜,拍摄了月球照片。在20分钟曝光期间,望远镜靠钟表机构带动,始终对准月球。所得到的照片很清晰。

以肖像画为业的美国人阿尔万.克拉克渴望磨制透镜。他仔细考察了邦德那架38厘米的折射镜,并检测了它与理想状况的微小偏离。后来,他在儿子帮助下开了一家工厂。1870年,克拉克父子接下美国海军天文台建造66厘米折射望远镜的定单。它的透镜重达45千克,镜身长13米,质量极佳。

  美国金融家利克于1874年宣称,将留下70万美元,用来建造一架比当时所有的天文望远镜都更大更好的望远镜。工作主要由小克拉克承担,14年后,一块口径91厘米的透镜终于制成,并装入长18.3米的镜筒。这架折射望远镜被命名为利克望远镜,于1888年1月3日正式启用。

12年,天文学家巴纳德使用利克望远镜发现了木星的第五颗卫星,即木卫五。它的直径只有110千米。木卫五离木星表面仅108000千米。发现这样又小又暗的天体——况且它又如此接近木星本身占压倒优势的光辉,必须拥有极好的透镜和极敏锐的眼睛,巴纳德很幸运地两者兼备了。木卫五是用眼睛发现的最后一个太阳系天体。此后,这类发现就要归功于望远镜上的照相设备以及空间时代更新颖的技术了。

  南加利福尼亚大学想要拥有一架比利克望远镜更好的折射望远镜,遂向克拉克订购一块102厘米的透镜。但是,在克拉克为此投入2万美元之后,这所大学却无法筹齐所需的资金。天文学家海尔解决了问题。

  海尔在芝加哥西北约130千米处选了一个地点,叶凯士天文台就建在那里。15年10月,年逾花甲的小克拉克为海尔磨好了102厘米的透镜,它重达230千克,装在一架长逾18米的望远镜里。整个望远镜重达18吨,但是平衡极佳,用很小的推力就可以让它转动并瞄准天空的任何部分。

  17年5月21日,这架折射望远镜首次启用。小克拉克在目睹折射望远镜的这一辉煌胜利之后三个星期去世了。今天,叶凯士望远镜和利克望远镜依然在世界上保持着折射望远镜的冠军和亚军称号。

  事实上,折射望远镜已经达到它的巅峰,它的路也走到了尽头。首先,极难得到可供制造透镜的尺寸很大而又完美无暇的光学玻璃。整个19世纪和20世纪的技术进展,并未使造出一块足以超越叶凯士折射望远镜的透镜玻璃变得更容易些。其次,因为光线必须透过整块玻璃,所以透镜只能在边缘上支承。巨型透镜分量很重,得不到支撑的透镜部分就会往下凹陷,整块透镜就会变形。透镜的尺寸越大,问题也就越严重[5]。

四.射电望远镜

  1932年,美国无线电工程师卡尔·央斯基 (Karl Guthe Jansky,1905—1950)用无线电天线探测到来自银河系中心(人马座方向)的射电辐射,这标志着射电天文学的诞生,标志着人类打开了在传统光学波段之外进行观测的第一个窗口[6]。 

      接收并研究来自太空的射电波的仪器统称为射电望远镜(radio telescope)。射电望远镜的结构主要由定向天线或天线阵,馈电线,高灵敏度接收机和记录仪或示波器等部分组成。天线或天线阵将收集到的天体电波,经过馈电线送到接收机上;接收机同收音机的原理相似,但它具有极高的灵敏度和稳定性,首先将微弱的天体电波高倍放大,再进行检波,让高频信号转变为低频形式,最后送到记录仪器上记录下来,或在示波器上显示出来。为了确定天体电波的强度,必须加一个强度已知的比较源(如噪声发生器或石墨热源),适当将比较源讯号输入接收机以便比较。射电望远镜通常按天线结构分几个类型,如抛物面天线,射电干涉仪,甚长基线干涉仪和综合孔径系统等。这些技术是20世纪60年代后发展起来的[7]。 

      上世纪六十年代,美国在波多黎各阿雷西博镇建造了直径达305米的抛物面射电望远镜,它是顺着山坡固定在地表面上的,不能转动,这是世界上最大的单孔径射电望远镜。 

      1962年,Ryle发明了综合孔径射电望远镜,他也因此获得了1974年诺贝尔物理学奖。综合孔径射电望远镜实现了由多个较小天线结构获得相当于大口径单天线所能取得的效果。 

      1967年Broten等人第一次记录到了VLBI干涉条纹。 

      上个世纪七十年代,联邦德国在玻恩附近建造了100米直径的全向转动抛物面射电望远镜,这是世界上最大的可转动单天线射电望远镜。 

      上世纪八十年代以来,欧洲的VLBI网(EVN),美国的VLBA阵,日本的空间VLBI(VSOP)相继投入使用,这是新一代射电望远镜的代表,它们在灵敏度、分辨率和观测波段上都大大超过了以往的望远镜。 

      中国科学院上海天文台和乌鲁木齐天文站的两架25 米射电望远镜作为正式成员参加了美国的地球自转连续观测计划(CORE)和欧洲的甚长基线干涉网(EVN),这两个计划分别用于地球自转和高精度天体测量研究(CORE)和天体物理研究(EVN)。这种由各国射电望远镜联合进行长基线干涉观测的方式,起到了任何一个国家单独使用大望远镜都不能达到的效果。 

      目前国际上将联合发展接收面积为1平方公里的低频射电望远镜阵(SKA),该计划将使低频射电观测的灵敏度约有两个量级的提高,有关各国正在进行各种预研究。 

射电望远镜为自然科学关于宇宙的探索起了关键的作用,比如:六十年代天文学的四大发现,类星体,脉冲星,星际分子和宇宙微波背景辐射,都是用射电望远镜观测得到的。射电望远镜的每一次长足的进步都会毫无例外地为射电天文学的发展树立一个里程碑。

五.空间望远镜

空间望远镜,即在地球大气外进行天文观测的大望远镜。由于避开了大气的影响和不会因重力而产生畸变,因而可以大大提高观测能力及分辨本领,甚至还可使一些光学望远镜兼作近红外 、近紫外观测。但在制造上也有许多新的严格要求,如对镜面加工精度要在0.01微米之内,各部件和机械结构要能承受发射时的振动、超重,但本身又要求尽量轻巧,以降低发射成本。由于空间望远镜发展时间较短,在此介绍哈勃空间望远镜和本世纪的空间望远镜[8]。

(一).哈勃空间望远镜(HST): 

这是由美国宇航局主持建造的四座巨型空间天文台中的第一座,也是所有天文观测项目中规模最大、投资最多、最受到公众注目的一项。它筹建于1978年,设计历时7年,19年完成,并于1990年4月25日由航天飞机运载升空,耗资30亿美元。但是由于人为原因造成的主镜光学系统的球差,不得不在1993年12月2日进行了规模浩大的修复工作。成功的修复使HST性能达到甚至超过了原先设计的目标,观测结果表明,它的分辨率比地面的大型望远镜高出几十倍。 

HST最初升空时携带了5台科学仪器:广角/行星照相机,暗弱天体照相机,暗弱天体光谱仪,高分辨率光谱仪和高速光度计。 1997年的维修中,为HST安装了第二代仪器:有空间望远镜成象光谱仪、近红外照相机和多目标摄谱仪,把HST的观测范围扩展到了近红外并提高了紫外光谱上的效率。 1999年12月的维修为HST更换了陀螺仪和新的计算机,并安装了第三代仪器――高级普查摄像仪,这将提高HST在紫外-光学-近红外的灵敏度和成图的性能。 HST对国际天文学界的发展有非常重要的影响。 

其在自然科学方面主要成就为:

宇宙年龄:哈勃空间望远镜对造父变星的观测为哈勃常数的精确测量提供了保证。哈勃的精细导星传感器对造父变星进行了直接的视差测量,大大削减了用造父变星周光关系推算距离的不确定性。在哈勃空间望远镜之前,观测得到的哈勃常数有1-2倍的差异,但是在有了新的造父变星观测之后宇宙距离尺度的不确定性猛然下降到了大约只有10%,从而对宇宙的扩张速率和年龄有更正确的认知。 

恒星形成:哈勃空间望远镜还有助于研究诸如猎户星云之类的恒星形成区。通过哈勃空间望远镜对猎户星云的早期观测发现,其中聚集了许多被浓密气体和尘埃盘包裹的年轻恒星。尽管已经从理论上和甚大天线阵的观测中推测出来了这些盘的存在,但是直到哈勃所拍摄的高分辨率照片才第一次直接揭示出了这些盘的结构和物理性质。 

恒星死亡:哈勃的观测还在超新星爆发和γ射线暴之间建立起了联系。通过哈勃对γ射线暴余辉的观测,研究人员把这些暴发锁定在了河外星系中的大质量恒星形成区。由此哈勃望远镜也令人信服地证明了这些剧烈的爆发和大质量恒星死亡的直接联系。 

黑洞:哈勃空间望远镜最早的核心计划之一就是要建立起由黑洞驱动的类星体和星系之间的关系。之后,通过它们对周围恒星的引力作用,针对“哈勃”所获得的近距星系光谱的动力学模型证实了黑洞的存在。这些研究也导致了对十几个星系黑洞质量的可靠测量,揭示出了黑洞质量和星系核球质量之间极为紧密的联系。 

宇宙学:由于宇宙学的研究对象主要来自天文观测,而这也是唯一能在宇宙演化和结构的基础上测量宇宙距离和年龄的办法。哈勃空间望远镜能够通过对造父变星距离的测量来测定哈勃常数,而这与宇宙在今天的膨胀速度有关。此外,通过对超新星的测定,可以帮助研究人员来超新星的亮度,从而进一步宇宙早期膨胀的属性,从而为暗能量模型提供一个强有力的。

(二).二十一世纪初的空间天文望远镜: 

"下一代大型空间望远镜"(NGST)和"空间干涉测量飞行任务"(SIM)是NASA"起源计划"的关键项目,用于探索在宇宙最早期形成的第一批星系和星团。其中,NGST是大孔径被动制冷望远镜,口径在4~8米之间,是HST和SIRTF(红外空间望远镜)的后续项目。它强大的观测能力特别体现在光学、近红外和中红外的大视场、衍射限成图方面。将运行于近地轨道的SIM采用迈克尔干涉方案,提供毫角秒级精度的恒星的精密绝对定位测量,同时由于具有综合成图能力,能产生高分辨率的图象,所以可以用于实现搜索其它行星等科学目的。 "天体物理的全天球天体测量干涉仪"(GAIA)将会在对银河系的总体几何结构及其运动学做全面和彻底的普查,在此基础上开辟广阔的天体物理研究领域。GAIA采用Fizeau干涉方案,视场为1°。GAIA和SIM的任务在很大程度上是互补的。

六.未来展望

     天文望远镜的发展将为人类捕捉到越来越多的光学信息,同时, 也将带动更多的科学发展。总的来说, 天文望远镜的发展有以下几个趋势[9]:

 1 .大型化。建造现代大型望远镜的目的是提高集光能力和分辨能力, 以观测更暗天体和分辨细节。提高集光能力就要增大物镜的口径。无论是光学望远镜还是射电望远镜, 都在朝着大型化的趋势发展。许多在研或者预研究的大型望远镜正在各个国家开展。

2 .太空化。地球上, 光学望远镜会受到大气污染的影响, 射电望远镜会受到寻呼机、手机等电磁波发射台站的干扰。因此科学家把越来越多的天文望远镜送上了太空。九十年代哈勃望远镜的发射标志着望远镜太空化时代的到来。现在科学家们的想法是在月球上建造天文望远镜。

3 .与其它学科的关联越来越大。现代天文望远镜的发展使工艺和技术发展到了极点。当代的许多技术如电子技术、计算机技术、激光技术、核辐射技术等都被应用到天文望远镜中来。传统的望远镜实现了更新换代, 以多镜面的拼合并结合主动光学和自适应光学技术, 制造出突破单面镜极限的大口径望远镜; 射电干涉仪和综合孔径射电望远镜的问世,大大提高了分辨率,实现了射电成像。

参考文献

[1]朱鋐雄. 探索天体演化 洞察宇宙奥秘──望远镜发展简史[J]. 世界科学,1995,(7). 

[2]天文光学仪器[J]. 中国光学与应用光学文摘,1996,(6).

[3]蒋世仰. 大型光学望远镜发展的现状与动向[J]. 自然杂志,1981,(1).

[4]胡中为, 萧耐园.天文学教程. 高等教育出版社,2003

[5]马品仲. 大型天文望远镜研究[J]. 中国空间科学技术,1993,(5).

[6]吴盛殷,南仁东. 射电望远镜的发展和前景[J]. 天文学进展,1998,(3).

[7]王风丽,王占山,张众,吴文娟,王洪昌,陈玲燕. X射线天文望远镜的进展[J]. 物理,2005,(3).

[8]马品仲. 空间望远镜研究与“哈勃”介绍[J]. 光学精密工程,1994,(6).

[9]郝钟雄. 天文望远镜现状及发展趋势[J]. 现代科学仪器,2007,(5). 

文档

天文望远镜的发展与自然科学的进步

海南大学《现代自然科学技术概论》考核作业课程代码:974105学分:2.0学分学年度:2010-2011学年度姓名:曹国宝性别:男学号:20080W0102学院和班级:材料与化工学院08级理科实验班天文望远镜的发展与自然科学的进步曹国宝(海南大学材料与化工学院海口市570228)摘要:本文通过对各种天文望远镜的发明及简介,使大家了解天文望远镜的发展简史.并阐述其在自然科学发展史上所作出的贡献。指出各种天文望远镜的优点和不足之处,最后研究了其未来发展趋势并作出展望。关键词:自然科学天文望远镜光学
推荐度:
  • 热门焦点

最新推荐

猜你喜欢

热门推荐

专题
Top