
八年级下期数学模拟试题及答案(人教版)
一. 填空题(30分)
1. 命题“等角的补角相等”的条件是______________,结论是______________。
2. 若不等式组无解,则m的取值范围是______________。
3. 分解因式______________。
4. 如图,DE∥BC,AD=15cm,BD=20cm,则___________。
5. 某工厂储存了t天用的煤m吨,要使储存的煤比预定的时间多用d天,每天应节约用煤______________吨。
6. 三个连续自然数的和小于15,这样的自然数组共有______________组。
7. 电视节目主持人在主持节目时,站在舞台的黄金分割点处最自然得体。若舞台AB长为20m,试计算主持人应走到离A点至少______________m处比较得体。
8. 已知关于x的分式方程有增根,则k的值是_____________。
9. 化简_____________。
10. 甲、乙两名学生在5次数学考试中,得分如下:
甲:,85,91,95,90;
乙:98,82,80,95,95。
_____________的成绩比较稳定,_____________的潜力大。
二. 选择题(30分)
1. 若是一个完全平方式,则k的值为( )
A. 6 B. ±6 C. 12 D. ±12
2. 某市有7万名学生参加中考,要想了解这7万名学生的数学考试成绩,从中抽取了1000名考生的数学成绩进行分析,以下说法正确的是( )
A. 这1000名考生是这个总体的一个样本 B. 每名考生是个体
C. 这种调查方式是普查 D. 7万名考生的数学成绩是总体
3. 下列命题中真命题的个数是( )
(1)有一个锐角相等的两个直角三角形相似
(2)斜边和一直角边对应成比例的两个直角三角形相似
(3)任意两个矩形一定相似
(4)有一个内角相等的两个菱形相似
A. 1个 B. 2个 C. 3个 D. 4个
4. 已知:如图,AB∥CD,∠D=38°,∠B=80°,则∠P=( )
A. 52° B. 42° C. 10° D. 40°
5. 如图,△ABC中,P为AB上一点,有下面四个条件中:(1)∠ACP=∠B;(2)∠APC=∠ACB;(3);(4)AB·CP=AP·CB,能满足△APC与△ACB相似的条件是( )
A. (1)(2)(3) B. (1)(3)(4)
C. (2)(3)(4) D. (1)(2)(4)
6. △ABC,BF、CF是角平分线,∠A=70°,则∠BFC=( )
A. 125° B. 110° C. 100° D. 150°
7. 某同学想测量旗杆的高度,他在某一时间测得1m长的竹竿竖直放置时得影长为1.5m,在同一时刻测量旗杆的影长时,因旗杆靠近一幢楼房,影子不全落在地面上,有一部分落在墙上,他测得落在地面上的影长为21m,留在墙上的影长为2m,则旗杆的高度是( )m。
A. 12 B. 16 C. 10 D. 15
8. 已知:CE⊥AD,∠A=35°,∠C=25°,则∠B=( )
A. 25° B. 30° C. 35° D. 45°
9. 如图,四边形ABCD为平行四边形,则图有( )对相似三角形(不包括全等三角形)。
A. 2对 B. 3对 C. 4对 D. 5对
10. 当x=( )时,分式的值为0。
A. 2 B. C. D. 6
三. 作图题:
利用位似图形的方法把四边形ABCD放大2倍成四边形。
四. 解答题。
1. 在一次测量旗杆高度的活动中,某小组使用的方案如下:AB表示某同学从眼睛到脚底的距离,CD表示一根标杆,EF表示旗杆,AB、CD、EF都垂直于地面。若AB=1.6m,CD=2m,人与标杆之间的距离BD=1m,标杆与旗杆之间的距离DF=30m,求旗杆EF的高度。
2. 为了让学生了解环保知识,增强环保意识,某中学举行了一次“环保知识竞赛”,共有900名学生参加了这次竞赛。为了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分取整数,满分为100分)进行统计。
(1)请你根据所学知识补全表格。
| 分组 | 频数 | 频率 |
| 50.5~60.5 | 4 | 0.08 |
| 60.5~70.5 | 0.16 | |
| 70.5~80.5 | 10 | |
| 80.5~90.5 | 16 | 0.32 |
| 90.5~100.5 | ||
| 合计 | 50 | 1.00 |
4. 已知∠1+∠2=180°,求证:∠3=∠4。
5. 小鹏和小凯两位同学都住在离学校3.6千米的A地,他们同时出发去学校,小鹏出发走100米时,发现忘了带作业本,便立即返回,取了作业本又立即从A地去学校,结果两人同时到达了学校,又知小鹏比小凯每小时多走0.5千米,求两人的速度?
试题答案
一. 填空题。
1. 如果两个角相等,它们的补角相等
2.
3.
4. 9:40
5.
6. 3 提示:(1,2,3)(2,3,4)(3,4,5)
7.
8. 1
9.
10. 甲,乙
二. 选择题。
1. D 2. D 3. C 4. B 5. A
6. A 7. B 8. B 9. D 10. B
三. 作图题。
∴四边形A’B’C’D’即为所求
四. 解答题。
1. 解:过A作AM⊥EF交CD、EF于N、M
∵AB⊥BF,CD⊥BF,EF⊥BF
∴∠B=∠D=∠F=∠1=90°
∴四边形ABDN、DFMN、ABFM均为矩形
∴AB=DN=FM=1.6,AN=BD=1,NM=DF=30
∵CD∥EF
∴CN∥EM
∴∠ACN=∠E
又∵∠2=∠2
∴△ACN∽△AEM
∴
∴EM=12.4
∴EF=14(m)
答:EF=14m。
2. 8,0.2,12,0.24
3. 作ED∥AB交AC于E
∴∠1=∠A
又∵∠C=∠C
∴△ECD∽△ACB
4. 证:∵∠1+∠2=180°
又∵∠2=∠5
∴∠1+∠5=180°
∴a∥b
∴∠3=∠4
5. 解:设小凯的速度为x千米/时,小鹏速度千米/时
解得:
经检验:是原方程的解。
答:小鹏的速度9.5千米/时,小凯的速度9千米/时。
