
3.已知:AB=4,AC=2,D是BC中点,AD是整数,求AD
解:延长AD到E,使AD=DE
∵D是BC中点
∴BD=DC
在△ACD和△BDE中
AD=DE
∠BDE=∠ADC
BD=DC
∴△ACD≌△BDE
∴AC=BE=2
∵在△ABE中
AB-BE<AE<AB+BE
∵AB=4
即4-2<2AD<4+2
1<AD<3
∴AD=2
4.已知:D是AB中点,∠ACB=90°,求证:
延长CD与P,使D为CP中点。连接AP,BP
∵DP=DC,DA=DB
∴ACBP为平行四边形
又∠ACB=90
∴平行四边形ACBP为矩形
∴AB=CP=1/2AB
5.已知:BC=DE,∠B=∠E,∠C=∠D,F是CD中点,求证:∠1=∠2
证明:连接BF和EF
∵ BC=ED,CF=DF,∠BCF=∠EDF
∴ 三角形BCF全等于三角形EDF(边角边)
∴ BF=EF,∠CBF=∠DEF
连接BE
在三角形BEF中,BF=EF
∴ ∠EBF=∠BEF。
∵ ∠ABC=∠AED。
∴ ∠ABE=∠AEB。
∴ AB=AE。
在三角形ABF和三角形AEF中
AB=AE,BF=EF,
∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF
∴ 三角形ABF和三角形AEF全等。
∴ ∠BAF=∠EAF (∠1=∠2)。
6.已知:∠1=∠2,CD=DE,EF//AB,求证:EF=AC
过C作CG∥EF交AD的延长线于点G
CG∥EF,可得,∠EFD=CGD
DE=DC
∠FDE=∠GDC(对顶角)
∴△EFD≌△CGD
EF=CG
∠CGD=∠EFD
又,EF∥AB
∴,∠EFD=∠1
∠1=∠2
∴∠CGD=∠2
∴△AGC为等腰三角形,
AC=CG
又 EF=CG
∴EF=AC
7.已知:AD平分∠BAC,AC=AB+BD,求证:∠B=2∠C
A
证明:延长AB取点E,使AE=AC,连接DE
∵AD平分∠BAC
∴∠EAD=∠CAD
∵AE=AC,AD=AD
∴△AED≌△ACD (SAS)
∴∠E=∠C
∵AC=AB+BD
∴AE=AB+BD
∵AE=AB+BE
∴BD=BE
∴∠BDE=∠E
∵∠ABC=∠E+∠BDE
∴∠ABC=2∠E
∴∠ABC=2∠C
8.已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE
证明:
在AE上取F,使EF=EB,连接CF
∵CE⊥AB
∴∠CEB=∠CEF=90°
∵EB=EF,CE=CE,
∴△CEB≌△CEF
∴∠B=∠CFE
∵∠B+∠D=180°,∠CFE+∠CFA=180°
∴∠D=∠CFA
∵AC平分∠BAD
∴∠DAC=∠FAC
∵AC=AC
∴△ADC≌△AFC(SAS)
∴AD=AF
∴AE=AF+FE=AD+BE
9.已知:AB=4,AC=2,D是BC中点,AD是整数,求AD
解:延长AD到E,使AD=DE
∵D是BC中点
∴BD=DC
在△ACD和△BDE中
AD=DE
∠BDE=∠ADC
BD=DC
∴△ACD≌△BDE
∴AC=BE=2
∵在△ABE中
AB-BE<AE<AB+BE
∵AB=4
即4-2<2AD<4+2
1<AD<3
∴AD=2
10.已知:D是AB中点,∠ACB=90°,求证:
解:延长AD到E,使AD=DE
∵D是BC中点
∴BD=DC
在△ACD和△BDE中
AD=DE
∠BDE=∠ADC
BD=DC
∴△ACD≌△BDE
∴AC=BE=2
∵在△ABE中
AB-BE<AE<AB+BE
∵AB=4
即4-2<2AD<4+2
1<AD<3
∴AD=2
11.已知:BC=DE,∠B=∠E,∠C=∠D,F是CD中点,求证:∠1=∠2
证明:连接BF和EF。
∵ BC=ED,CF=DF,∠BCF=∠EDF。
∴ 三角形BCF全等于三角形EDF(边角边)。
∴ BF=EF,∠CBF=∠DEF。
连接BE。
在三角形BEF中,BF=EF。
∴ ∠EBF=∠BEF。
又∵ ∠ABC=∠AED。
∴ ∠ABE=∠AEB。
∴ AB=AE。
在三角形ABF和三角形AEF中,
AB=AE,BF=EF,
∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF。
∴ 三角形ABF和三角形AEF全等。
∴ ∠BAF=∠EAF (∠1=∠2)。
12.已知:∠1=∠2,CD=DE,EF//AB,求证:EF=AC
过C作CG∥EF交AD的延长线于点G
CG∥EF,可得,∠EFD=CGD
DE=DC
∠FDE=∠GDC(对顶角)
∴△EFD≌△CGD
EF=CG
∠CGD=∠EFD
又EF∥AB
∴∠EFD=∠1
∠1=∠2
∴∠CGD=∠2
∴△AGC为等腰三角形,
AC=CG
又 EF=CG
∴EF=AC
13.已知:AD平分∠BAC,AC=AB+BD,求证:∠B=2∠C
证明:延长AB取点E,使AE=AC,连接DE
∵AD平分∠BAC
∴∠EAD=∠CAD
∵AE=AC,AD=AD
∴△AED≌△ACD (SAS)
∴∠E=∠C
∵AC=AB+BD
∴AE=AB+BD
∵AE=AB+BE
∴BD=BE
∴∠BDE=∠E
∵∠ABC=∠E+∠BDE
∴∠ABC=2∠E
∴∠ABC=2∠C
14.已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE
在AE上取F,使EF=EB,连接CF
∵CE⊥AB
∴∠CEB=∠CEF=90°
∵EB=EF,CE=CE,
∴△CEB≌△CEF
∴∠B=∠CFE
∵∠B+∠D=180°,∠CFE+∠CFA=180°
∴∠D=∠CFA
∵AC平分∠BAD
∴∠DAC=∠FAC
又∵AC=AC
∴△ADC≌△AFC(SAS)
∴AD=AF
∴AE=AF+FE=AD+BE
12. 如图,四边形ABCD中,AB∥DC,BE、CE分别平分∠ABC、∠BCD,且点E在AD上。求证:BC=AB+DC。
在BC上截取BF=AB,连接EF
∵BE平分∠ABC
∴∠ABE=∠FBE
又∵BE=BE
∴⊿ABE≌⊿FBE(SAS)
∴∠A=∠BFE
∵AB//CD
∴∠A+∠D=180º
∵∠BFE+∠CFE=180º
∴∠D=∠CFE
又∵∠DCE=∠F
平分∠BCD
∴⊿DCE≌⊿FCE(AAS)
∴CD=CF
∴BC=BF+CF=AB+CD
13.已知:AB//ED,∠EAB=∠BDE,AF=CD,EF=BC,求证:∠F=∠C
AB‖ED,得:∠EAB+∠AED=∠BDE+∠ABD=180度,
∵∠EAB=∠BDE,
∴∠AED=∠ABD,
∴四边形ABDE是平行四边形。
∴得:AE=BD,
∵AF=CD,EF=BC,
∴三角形AEF全等于三角形DBC,
∴∠F=∠C。
50.已知:AB=CD,∠A=∠D,求证:∠B=∠C
证明:设线段AB,CD所在的直线交于E,(当AD △AED是等腰三角形。 ∴AE=DE 而AB=CD ∴BE=CE (等量加等量,或等量减等量) ∴△BEC是等腰三角形 ∴∠B=∠C. 51.P是∠BAC平分线AD上一点,AC>AB,求证:PC-PB 使AE=AB。 ∵AE=AB AP=AP ∠EAP=∠BAE, ∴△EAP≌△BAP ∴PE=PB。 PC<EC+PE ∴PC<(AC-AE)+PB ∴PC-PB<AC-AB。 52.已知∠ABC=3∠C,∠1=∠2,BE⊥AE,求证:AC-AB=2BE 证明: 在AC上取一点D,使得角DBC=角C ∵∠ABC=3∠C ∴∠ABD=∠ABC-∠DBC=3∠C-∠C=2∠C; ∵∠ADB=∠C+∠DBC=2∠C; ∴AB=AD ∴AC – AB =AC-AD=CD=BD 在等腰三角形ABD中,AE是角BAD的角平分线, ∴AE垂直BD ∵BE⊥AE ∴点E一定在直线BD上, 在等腰三角形ABD中,AB=AD,AE垂直BD ∴点E也是BD的中点 ∴BD=2BE ∵BD=CD=AC-AB ∴AC-AB=2BE 53.已知,E是AB中点,AF=BD,BD=5,AC=7,求DC ∵作AG∥BD交DE延长线于G ∴AGE全等BDE ∴AG=BD=5 ∴AGF∽CDF AF=AG=5 ∴DC=CF=2 18.如图,在△ABC中,BD=DC,∠1=∠2,求证:AD⊥BC. 解:延长AD至BC于点E, ∵BD=DC ∴△BDC是等腰三角形 ∴∠DBC=∠DCB 又∵∠1=∠2 ∴∠DBC+∠1=∠DCB+∠2 即∠ABC=∠ACB ∴△ABC是等腰三角形 ∴AB=AC 在△ABD和△ACD中 {AB=AC ∠1=∠2 BD=DC ∴△ABD和△ACD是全等三角形(边角边) ∴∠BAD=∠CAD ∴AE是△ABC的中垂线 ∴AE⊥BC ∴AD⊥BC 19.如图,OM平分∠POQ,MA⊥OP,MB⊥OQ,A、B为垂足,AB交OM于点N. 求证:∠OAB=∠OBA 证明: ∵OM平分∠POQ ∴∠POM=∠QOM ∵MA⊥OP,MB⊥OQ ∴∠MAO=∠MBO=90 ∵OM=OM ∴△AOM≌△BOM (AAS) ∴OA=OB ∵ON=ON ∴△AON≌△BON (SAS) ∴∠OAB=∠OBA,∠ONA=∠ONB ∵∠ONA+∠ONB=180 ∴∠ONA=∠ONB=90 ∴OM⊥AB 20.(5分)如图,已知AD∥BC,∠PAB的平分线与∠CBA的平分线相交于E,CE的连线交AP于D.求证:AD+BC=AB. 做BE的延长线,与AP相交于F点, ∵PA//BC ∴∠PAB+∠CBA=180°,又∵,AE,BE均为∠PAB和∠CBA的角平分线 ∴∠EAB+∠EBA=90°∴∠AEB=90°,EAB为直角三角形 在三角形ABF中,AE⊥BF,且AE为∠FAB的角平分线 ∴三角形FAB为等腰三角形,AB=AF,BE=EF 在三角形DEF与三角形BEC中, ∠EBC=∠DFE,且BE=EF,∠DEF=∠CEB, ∴三角形DEF与三角形BEC为全等三角形,∴DF=BC ∴AB=AF=AD+DF=AD+BC 21.如图,△ABC中,AD是∠CAB的平分线,且AB=AC+CD,求证:∠C=2∠B 延长AC到E 使AE=AC 连接 ED ∵ AB=AC+CD ∴ CD=CE 可得∠B=∠E △CDE为等腰 ∠ACB=2∠B 22.(6分)如图①,E、F分别为线段AC上的两个动点,且DE⊥AC于E,BF⊥AC于F,若AB=CD,AF=CE,BD交AC于点M. (1)求证:MB=MD,ME=MF (2)当E、F两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由. (1)连接BE,DF. ∵DE⊥AC于E,BF⊥AC于F, ∴∠DEC=∠BFA=90°,DE∥BF, 在Rt△DEC和Rt△BFA中, ∵AF=CE,AB=CD, ∴Rt△DEC≌Rt△BFA(HL), ∴DE=BF. ∴四边形BEDF是平行四边形. ∴MB=MD,ME=MF; (2)连接BE,DF. ∵DE⊥AC于E,BF⊥AC于F, ∴∠DEC=∠BFA=90°,DE∥BF, 在Rt△DEC和Rt△BFA中, ∵AF=CE,AB=CD, ∴Rt△DEC≌Rt△BFA(HL), ∴DE=BF. ∴四边形BEDF是平行四边形. ∴MB=MD,ME=MF. 23.已知:如图,DC∥AB,且DC=AE,E为AB的中点, (1)求证:△AED≌△EBC. (2)观看图前,在不添辅助线的情况下,除△EBC外,请再写出两个与△AED的面积相等的三角形.(直接写出结果,不要求证明): 证明: ∵DC∥AB ∴∠CDE=∠AED ∵DE=DE,DC=AE ∴△AED≌△EDC ∵E为AB中点 ∴AE=BE ∴BE=DC ∵DC∥AB ∴∠DCE=∠BEC ∵CE=CE ∴△EBC≌△EDC ∴△AED≌△EBC 24.(7分)如图,△ABC中,∠BAC=90度,AB=AC,BD是∠ABC的平分线,BD的延长线垂直于过C点的直线于E,直线CE交BA的延长线于F. 求证:BD=2CE. 证明: ∵∠CEB=∠CAB=90° ∴ABCE四点共元 ∵∠AB E=∠CB E ∴AE=CE ∴∠ECA=∠EAC 取线段BD的中点G,连接AG,则:AG=BG=DG ∴∠GAB=∠ABG 而:∠ECA=∠GBA (同弧上的圆周角相等) ∴∠ECA=∠EAC=∠GBA=∠GAB 而:AC=AB ∴△AEC≌△AGB ∴EC=BG=DG ∴BE=2CE 25、如图:DF=CE,AD=BC,∠D=∠C。求证:△AED≌△BFC。 证明:∵DF=CE, ∴DF-EF=CE-EF, 即DE=CF, 在△AED和△BFC中, ∵ AD=BC, ∠D=∠C ,DE=CF ∴△AED≌△BFC(SAS) 26、(10分)如图:AE、BC交于点M,F点在AM上,BE∥CF,BE=CF。 求证:AM是△ABC的中线。 证明: ∵BE‖CF ∴∠E=∠CFM,∠EBM=∠FCM ∵BE=CF ∴△BEM≌△CFM ∴BM=CM ∴AM是△ABC的中线. 27、(10分)如图:在△ABC中,BA=BC,D是AC的中点。求证:BD⊥AC。 ∵△ABD和△BCD的三条边都相等 ∴△ABD=△BCD ∴∠ADB=∠CD ∴∠ADB=∠CDB=90° ∴BD⊥AC 28、(10分)AB=AC,DB=DC,F是AD的延长线上的一点。求证:BF=CF 在△ABD与△ACD中 AB=AC BD=DC AD=AD ∴△ABD≌△ACD ∴∠ADB=∠ADC ∴∠BDF=∠FDC 在△BDF与△FDC中 BD=DC ∠BDF=∠FDC DF=DF ∴△FBD≌△FCD ∴BF=FC 29、(12分)如图:AB=CD,AE=DF,CE=FB。求证:AF=DE。 ∵AB=DC AE=DF, CE=FB CE+EF=EF+FB ∴△ABE=△CDF ∵∠DCB=∠ABF AB=DC BF=CE △ABF=△CDE ∴AF=DE 30.公园里有一条“Z”字形道路ABCD,如图所示,其中AB∥CD,在AB,CD,BC三段路旁各有一只小石凳E,F,M,且BE=CF,M在BC的中点,试说明三只石凳E,F,M恰好在一条直线上. 证明:连接EF ∵AB∥CD ∴∠B=∠C ∵M是BC中点 ∴BM=CM 在△BEM和△CFM中 BE=CF ∠B=∠C BM=CM ∴△BEM≌△CFM(SAS) ∴CF=BE 31.已知:点A、F、E、C在同一条直线上, AF=CE,BE∥DF,BE=DF.求证:△ABE≌△CDF. ∵AF=CE,FE=EF. ∴AE=CF. ∵DF//BE, ∴∠AEB=∠CFD(两直线平行,内错角相等) ∵BE=DF ∴:△ABE≌△CDF(SAS) 32.已知:如图所示,AB=AD,BC=DC,E、F分别是DC、BC的中点,求证: AE=AF。 连接BD; ∵AB=AD BC=D ∴∠ADB=∠ABD ∠CDB=∠ABD;两角相加,∠ADC=∠ABC; ∵BC=DC E\\F是中点 ∴DE=BF; ∵AB=AD DE=BF ∠ADC=∠ABC ∴AE=AF。 33.如图,在四边形ABCD中,E是AC上的一点,∠1=∠2,∠3=∠4,求证: ∠5=∠6. 证明: 在△ADC,△ABC中 ∵AC=AC,∠BAC=∠DAC,∠BCA=∠DCA ∴△ADC≌△ABC(两角加一边) ∵AB=AD,BC=CD 在△DEC与△BEC中 ∠BCA=∠DCA,CE=CE,BC=CD ∴△DEC≌△BEC(两边夹一角) ∴∠DEC=∠BEC 34.已知AB∥DE,BC∥EF,D,C在AF上,且AD=CF,求证:△ABC≌△DEF. ∵AD=DF ∴AC=DF ∵AB//DE ∴∠A=∠EDF 又∵BC//EF ∴∠F=∠BCA ∴△ABC≌△DEF(ASA) 35.已知:如图,AB=AC,BD AC,CE AB,垂足分别为D、E,BD、CE相交于点F,求证:BE=CD. 证明: ∵BD⊥AC ∴∠BDC=90° ∵CE⊥AB ∴∠BEC=90° ∴∠BDC=∠BEC=90° ∵AB=AC ∴∠DCB=∠EBC ∴BC=BC ∴Rt△BDC≌Rt△BEC(AAS) ∴BE=CD 16、如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F。 求证:DE=DF. 证明: ∵AD是∠BAC的平分线 ∴∠EAD=∠FAD ∵DE⊥AB,DF⊥AC ∴∠BFD=∠CFD=90° ∴∠AED与∠AFD=90° 在△AED与△AFD中 ∠EAD=∠FAD AD=AD ∠AED=∠AFD ∴△AED≌△AFD(AAS) ∴AE=AF 在△AEO与△AFO中 ∠EAO=∠FAO AO=AO AE=AF ∴△AEO≌△AFO(SAS) ∴∠AOE=∠AOF=90° ∴AD⊥EF 37.已知:如图, ACBC于C , DEAC于E , ADAB于A , BC =AE.若AB = 5 ,求AD 的长? ∵AD⊥AB ∴∠BAC=∠ADE 又∵AC⊥BC于C,DE⊥AC于E 根据三角形角度之和等于180度 ∴∠ABC=∠DAE ∵BC=AE,△ABC≌△DAE(ASA) ∴AD=AB=5 38.如图:AB=AC,ME⊥AB,MF⊥AC,垂足分别为E、F,ME=MF。求证:MB=MC 证明: ∵AB=AC ∴∠B=∠C ∵ME⊥AB,MF⊥AC ∴∠BEM=∠CFM=90° 在△BME和△CMF中 ∵ ∠B=∠C ∠BEM=∠CFM=90° ME=MF ∴△BME≌△CMF(AAS) ∴MB=MC. 39.如图,给出五个等量关系:① ② ③ ④ ⑤.请你以其中两个为条件,另三个中的一个为结论,推出一个正确的结论(只需写出一种情况),并加以证明. 已知:①AD=BC,⑤∠DAB=∠CBA 求证:△DAB≌△CBA 证明:∵AD=BC,∠DAB=∠CBA 又∵AB=AB ∴△DAB≌△CBA 40.在△ABC中,,,直线经过点,且于,于.(1)当直线绕点旋转到图1的位置时,求证: ①≌;②; (2)当直线绕点旋转到图2的位置时,(1)中的结论还成立吗?若成立,请给出证明;若不成立,说明理由. (1) ①∵∠ADC=∠ACB=∠BEC=90°, ∴∠CAD+∠ACD=90°,∠BCE+∠CBE=90°,∠ACD+∠BCE=90°. ∴∠CAD=∠BCE. ∵AC=BC, ∴△ADC≌△CEB. ②∵△ADC≌△CEB, ∴CE=AD,CD=BE. ∴DE=CE+CD=AD+BE. (2)∵∠ADC=∠CEB=∠ACB=90°, ∴∠ACD=∠CBE. 又∵AC=BC, ∴△ACD≌△CBE. ∴CE=AD,CD=BE. ∴DE=CE﹣CD=AD﹣BE 41.如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC。求证:(1)EC=BF;(2)EC⊥BF (1)∵AE⊥AB,AF⊥AC, ∴∠BAE=∠CAF=90°, ∴∠BAE+∠BAC=∠CAF+∠BAC, 即∠EAC=∠BAF, 在△ABF和△AEC中, ∵AE=AB,∠EAC=∠BAF,AF=AC, ∴△ABF≌△AEC(SAS), ∴EC=BF; (2)如图,根据(1),△ABF≌△AEC, ∴∠AEC=∠ABF, ∵AE⊥AB, ∴∠BAE=90°, ∴∠AEC+∠ADE=90°, ∵∠ADE=∠BDM(对顶角相等), ∴∠ABF+∠BDM=90°, 在△BDM中,∠BMD=180°-∠ABF-∠BDM=180°-90°=90°, ∴EC⊥BF. 42.如图:BE⊥AC,CF⊥AB,BM=AC,CN=AB。求证:(1)AM=AN;(2)AM⊥AN。 证明: (1) ∵BE⊥AC,CF⊥AB ∴∠ABM+∠BAC=90°,∠ACN+∠BAC=90° ∴∠ABM=∠ACN ∵BM=AC,CN=AB ∴△ABM≌△NAC ∴AM=AN (2) ∵△ABM≌△NAC ∴∠BAM=∠N ∵∠N+∠BAN=90° ∴∠BAM+∠BAN=90° 即∠MAN=90° ∴AM⊥AN 43.如图,已知∠A=∠D,AB=DE,AF=CD,BC=EF.求证:BC∥EF 在△ABF和△CDE中 ,AB=DE ∠A=∠D AF=CD ∴△ABF≡△CDE(边角边) ∴FB=CE 在四边形BCEF中 FB=CE BC=EF ∴四边形BCEF是平行四边形 ∴BC‖EF 44.如图,已知AC∥BD,EA、EB分别平分∠CAB和∠DBA,CD过点E,则AB与AC+BD相等吗?请说明理由 在AB上取点N ,使得AN=AC ∵∠CAE=∠EAN ∴AE为公共, ∴△CAE≌△EAN ∴∠ANE=∠ACE 又∵AC平行BD ∴∠ACE+∠BDE=180 而∠ANE+∠ENB=180 ∴∠ENB=∠BDE ∠NBE=∠EBN ∵BE为公共边 ∴△EBN≌△EBD ∴BD=BN ∴AB=AN+BN=AC+BD 45、(10分) 如图,已知: AD是BC上的中线 ,且DF=DE.求证:BE∥CF. 证明: ∵AD是△ABC的中线 BD=CD ∵DF=DE(已知) ∠BDE=∠FDC ∴△BDE≌△FDC 则∠EBD=∠FCD ∴BE∥CF(内错角相等,两直线平行)。 46、(10分)已知:如图,AB=CD,DE⊥AC,BF⊥AC,E,F是垂足,. 求证:. 证明: ∵DE⊥AC,BF⊥AC ∴∠CED=∠AFB=90º 又∵AB=CD,BF=DE ∴Rt⊿ABF≌Rt⊿CDE(HL) ∴AF=CE ∠BAF=∠DCE ∴AB//CD 47、(10分)如图,已知∠1=∠2,∠3=∠4,求证:AB=CD ∵,∠3=∠4 ∴OB=OC 在△AOB和△DOC中 ∠1=∠2 OB=OC ∠AOB=∠DOC △AOB≌△DOC ∴AO=DO AO+OC=DO+OB AC=DB 在△ACB和△DBC中 AC=DB ,∠3=∠4 BC=CB △ACB≌△DBC ∴AB=CD 48、 (10分)如图,已知AC⊥AB,DB⊥AB,AC=BE,AE=BD,试猜想线段CE与DE的大小与位置关系,并证明你的结论. CE>DE。当∠AEB越小,则DE越小。 证明: 过D作AE平行线与AC交于F,连接FB 由已知条件知AFDE为平行四边形,ABEC为矩形 ,且△DFB为等腰三角形。 RT△BAE中,∠AEB为锐角,即∠AEB<90° ∵DF//AE ∴∠FDB=∠AEB<90° △DFB中 ∠DFB=∠DBF=(180°-∠FDB)/2>45° RT△AFB中,∠FBA=90°-∠DBF <45° ∠AFB=90°-∠FBA>45° ∴AB>AF ∵AB=CE AF=DE ∴CE>DE 49、 (10分)如图,已知AB=DC,AC=DB,BE=CE,求证:AE=DE. ∵AB=DC,AC=DB,BC=BC ∴△ABC≌△DCB, ∴∠ABC=∠DCB 又∵BE=CE,AB=DC ∴△ABE≌△DCE ∴AE=DE 50.如图9所示,△ABC是等腰直角三角形,∠ACB=90°,AD是BC边上的中线,过C作AD的垂线,交AB于点E,交AD于点F,求证:∠ADC=∠BDE. 作CG⊥AB,交AD于H, 则∠ACH=45º,∠BCH=45º ∵∠CAH=90º-∠CDA, ∠BCE=90º-∠CDA ∴∠CAH=∠BCE 又∵AC=CB, ∠ACH=∠B=45º ∴△ACH≌△CBE, ∴CH=BE 又∵∠DCH=∠B=45º, CD=DB ∴△CFD≌△BED ∴∠ADC=∠BDE
