【中文摘要】设Ω是Rn的具有光滑边界r=Γ0UΓ1的星形有界区域,这里r。与r1是不相交闭集,v为外向单位法向量。在Ω上研究了具有边界阻尼项的非线性黏性波动方程这里b>0。我们利用Faedo.Galerkin方法证明上述问题整体解的存在性,并且当记忆项的核h满足指数衰减性、非线性项F满足适当的条件时,应用扰动能量的方法证明了强解和弱解的指数衰减性。
【英文摘要】LetΩbe a bounded star-shaped domain of R”,n≥1, with a smooth boundary F=Γ0 UΓ1. Here,Γ0 andΓ1 are closed and disjoint, v represents the unit vector outward normal toΓ. In this article, we study the nonlinear viscoelastic equationWhere b>0. The existence of global solutions is povered by means of Faedo-Galerkin method, and make use of the perturbed energy method to prove the exponential decay for the strong and weak solutions when the kernel h in the memory term decays exponentially, and the nonlinear term F satisfies suitable conditions.
【关键词】黏性波动方程 边界阻尼 指数衰减
【英文关键词】Viscoelastic Wave Equation Boundary Damping Exponential Decay
【目录】具有边界阻尼的黏性波动方程解的存在性和指数衰减性摘要4-5Abstract51 引言7-92 定义及主要结论9-113 强解和弱解的存在性11-223.1 能量估计12-173.1.1 先验估计12-143.1.2 第二估计14-173.2 非线性项F的分析17-193.3 唯一性19-203.4 弱解的存在性20-224 指数衰减性22-30参考文献30-33攻读硕士学位期间发表学术论文情况33-35致谢35