最新文章专题视频专题问答1问答10问答100问答1000问答2000关键字专题1关键字专题50关键字专题500关键字专题1500TAG最新视频文章推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37视频文章20视频文章30视频文章40视频文章50视频文章60 视频文章70视频文章80视频文章90视频文章100视频文章120视频文章140 视频2关键字专题关键字专题tag2tag3文章专题文章专题2文章索引1文章索引2文章索引3文章索引4文章索引5123456789101112131415文章专题3
当前位置: 首页 - 正文

搬运机械手的结构和控制系统设计

来源:动视网 责编:小OO 时间:2025-09-30 00:56:55
文档

搬运机械手的结构和控制系统设计

机电工程学院机电一体化系统设计课程设计设计题目:专业:学号:姓名:指导老师:毕业论文(设计)任务书一、题目:搬运机械手的结构和控制系统设计二、研究内容与目标:本设计主要的研究内容是1.用proe绘制搬运机械手三维立体图2.用proe转配搬运机械手及制作仿真动画并生成仿真视频制作3.利用PLC实现控制系统设计4.设计说明书(1份)目标:让搬运机械手能搬运物品,掌握机械手的设计原理和控制过程三、研究方法:通过不断地查找资料,研究工业机械手的作用,并不断分析最后制作出工业上需要的机械手。四、主要参考
推荐度:
导读机电工程学院机电一体化系统设计课程设计设计题目:专业:学号:姓名:指导老师:毕业论文(设计)任务书一、题目:搬运机械手的结构和控制系统设计二、研究内容与目标:本设计主要的研究内容是1.用proe绘制搬运机械手三维立体图2.用proe转配搬运机械手及制作仿真动画并生成仿真视频制作3.利用PLC实现控制系统设计4.设计说明书(1份)目标:让搬运机械手能搬运物品,掌握机械手的设计原理和控制过程三、研究方法:通过不断地查找资料,研究工业机械手的作用,并不断分析最后制作出工业上需要的机械手。四、主要参考
  

  机电工程学院

机电一体化系统设计

课程设计

设计题目:                         

专    业:                         

           学    号:                         

           姓    名:                         

           指导老师:                         

          

毕业论文(设计)任务书

一、题目:搬运机械手的结构和控制系统设计

二、研究内容与目标:

本设计主要的研究内容是

1. 用proe绘制搬运机械手三维立体图

2. 用proe转配搬运机械手及制作仿真动画并生成仿真视频制作

3. 利用PLC实现控制系统设计

4. 设计说明书(1份)

目标: 让搬运机械手能搬运物品,掌握机械手的设计原理和控制过程

三、研究方法:通过不断地查找资料,研究工业机械手的作用,并不断分析最后制作出工业上需要的机械手。

四、主要参考文献:(5篇以上)

[1]刘明保,吕春红等主编.机械手的组成机构及技术指标的确定.河南高等专科学校学报,

[2]李超主编.气动通用上下料机械手的研究与开发.陕西科技大学,

[3]陆祥生,杨绣莲主编.机械手.中国铁道出版社,

[4]张建民主编.工业机械人.北京:北京理工大学出版社,

[5]李允文主编.工业机械手设计.机械工业出版社,1996.

[6]蔡自兴主编.机械人学的发展趋势和发展战略.机械人技术,

[7]金茂青,曲忠萍,张桂华等主编.国外工业机械人发展的态势分析.机械人技术与应用,

[8]王雄耀主编.近代气动机械人(机械手)的发展及应用.液压气动与密封,

[9]李明主编.单臂回转机械手设计.制造技术与机床,2004. -66

[10]张军,封志辉主编.多工步搬运机械手的设计.机械设计,

搬运机械手的结构和控制系统设计

[摘要]用于再现人手功能的技术装置称为机械手。机械手是模仿着人手的部分动作,按给定程序、轨迹和要求实现自动抓取、搬运或操作的自动机械装置。在工业生产中应用的机械手被称为工业机械手。共业机械手是近代自动控制领域中出现的一项新技术,并已成为现代机械制造生产系统中的一个重要组成部分,这种新技术发展很快,逐渐成为一门新兴的学科——机械手工程。机械手涉及到力学、机械学、电器液压技术、自动控制技术、传感器技术和计算机技术等科学领域,是一门跨学科综合技术。机械手是一种能自动控制并可从新编程以变动的多功能机器,他有多个自由度,可以搬运物体以完成在不同环境中的工作。

 机械手的结构形式开始比较简单,专用性较强。 随着工业技术的发展,制成了能够的按程序控制实现重复操作,适用范围比较广的“程序控制通用机械手”,简称通用机械手。由于通用机械手能很快的改变工作程序,适应性较强,所以它在不断变换生产品种的中小批量生产中获得广泛的引用。

本课题要设计一套4自由度电机和液压混合搬运机械手(主要用来搬运圆柱状的物体如车轮)主要的设计有以下几个方面:

根据装配生产线搬运机械手的特点,确定液压搬运机械手的总体方案,保证机械手在空间有限位置的定位。然后根据考虑的总体方案确定机械手的总体结构,可采用模块化的设计,将机械手分为若干个模块,对各个模块进行设计,最后把这些模块拼装起来组成机械手。以机械手代替人工来提高工作效力,减轻劳动力提高生产力。本课题设计的目的就是采用低成本、抓取力量大和易于控制的液压来组成液压搬运机械手,最终实现装配生产线上工件的自动搬运。

第一章 绪论

工业机器人的简介

工业机器人是机械技术、电子技术与计算机技术有机结合在一起形成的一种机电一体化的产品,从其诞生起就受到人们的关心与重视。经过几十年的发展,目前工业机器人技术已经很成熟。工业机器人已从最初在解决劳动密集型工业中单调、重复的体力劳动发展到满足制造业自动化规模生产需要的工作。其应用领域不断扩 大,从最初主要应用于汽车工业发展到现在涉及制造业的各个行业。目前我国国民经济的快速发展,先进制造业已进入一个新的发展阶段[1]。

随着经济全球化和我国加入WTO,中国制造业面临着与国际接轨、参与国际竞争的局面。如何适应快速变化的国内外市场需求,如何以高质量、低成本、快速反应的手段在市场中取得生存和发展,已是我国企业不容回避的问题,这些问题为工业机器人的应用提供了大的市场需求,促使中国工业机器人的应用市场日趋成熟。近几年来,国外着名的工业机器人制造厂商纷纷加大了在我国的投资和应用技术的投入,对我国的国产工业机器人产业的发展带来了严峻的挑战。我国非常重视机器人技术的发展,从“七五”科技攻关及实施863 计划开始,就有计划地组织和发展工业机器人事业,经过20多年的研制和应用,目前在工业机器人的一些机种方面,如喷漆机器人、焊接机器人、搬运机器人、装配机器人和特种机器人都有了长足的进步,基本掌握了工业机器人的设计制造技术和机器人应用中单元和生产线的设计、制造技术,有了一支具有一定水平的技术队伍,奠定了我国自主发展机器人产业的基础。但是,我国工业机器人在总体技术上与国外先进水平相比还有很大差距,仅相当于国外九十年代中期的水平。

目前工业机器人的生产规模仍然不大,多数是单件小批生产,关键配套的单元部件和器件始终处于进口状态,工业机器人的性价比较低。我国整体装备制造水平不高,制约了我国工业机器人产业的形成和实现规模化的发展。尽管中国工业机器人的需求在逐年增加,但要能为用户提供高质价廉的工业机器人商品,目前在我国尚有较长的路程。首先为了促进中国工业机器人产业的发展,必须在以市场需求为主的前提下,国家在上鼓励企业在技术投入和技术改造方面应用国产工业机器人。同时转变现有的机制,建立以适应市场经济所需的工业机器人的产业基地。其次,在国家的科技发展规划中,应继续对工业机器人的研究开发和应用关键、基础部件的研究和产品化给予支持,形成产品和自动化制造装备同步协调发展的新局面。第三,结合我国的国情,加强我国工业机器人应用工程的开发,使之与国民经济的发展密切相结合。

经过近十年的努力,我国在工业机器人应用工程的开发方面已具有相当的实力,已有一支了解企业的需求,能开发出符合实际使用条件应用工程,成本低,服务及时,具备与国外公司的竞争能力,因此加强工业机器人应用工程的开发,并围绕应用工程的需要进行工业机器人新产品的开发,使之具有一定的规模化生产能力,这样可以促进我国企业的技术进步和提高竞争力,同时工业机器人的应用也可形成具有一定规模的产业。

如果说20 世纪90 年代机床创新的最大成就是发明并联机床的话,那么当今工业机器人在机床上的应用已成为发展的一大趋向。机器人与机床相结合,以往主要是解决工件自动上下料搬运问题,致使机床得以无人化24 小时连续运转。如擅长专机制作的意大利COMAU 公司,他们比较成熟地将缸体及缸盖生产线中的零件搬运,设计成由机器人完成。当然,对工件的抛光打磨、清洗及其它脏、累活也是机器人表现的舞台。去年9 月在汉诺威EMO2005 展览会上,工业机器人的应用非常抢眼,而且它应用的领域也在扩大。然而在这次CCMT2006 展览会上,值得一机器人应用是当今机床发展的一大趋向提的是1 号馆W 1 - 9 1 6 意大利意沃乐EVOLUT 公司,这个欧洲最大的机器人应用与集成公司,他们的一台DC-5 机器人修边、倒角装置特别引人注目。该机器人可以装夹工具对主轴上零件修边去毛刺,甚至机器人可以加装动力源用刀具对零件进行加工,因此它已将机械人传统的搬运、喷漆、焊接工作范围扩展到了金属切削及抛光领域。

工作单元还可以配备各种上料方式:如带视频装置可抓取随机摆放的工件,或以旋转台摆放,或以传送带摆放等等。DC-5 工作单元可以处理的最大负荷为120/150kg。适宜加工的金属材料为铝镁合金、铜、铅、铸铁等。可以代替至少四个工人的工作量。3 D 编程软件将以往8 小时编程时间缩减为15 分钟,为小批量多品种的工件提供最好的解决方案。意沃乐公司除此以外最常涉足的领域还有用于压铸单元、车、铣中心单元、复合机床单元、零件抛光单元上的各种机械人应用等等。随着社会的不断发展和进步,势必劳动力的成本将越来越高,对环保及安全的要求将越来越严,所以工业机器人的应用必将与时俱进。而且,由机器人干出的工件,譬如说打磨,其零件的一致性肯定比人工来得好,因此欧洲有些名牌汽车制造商甚至对某些零件的某些工步,规定必须由机器人来操作。由此看来,工业机器人在机床上的应用会将越来越广。

机械手概述

机械手是在机械化、自动化生产过程中发展起来的一种新型装置。近年来,随着电子技术特别是电子计算机的广泛应用,机器人的研制和生产已成为高技术领域内迅速发展起来的一门新兴技术,它更加促进了机械手的发展,使得机械手能更好地实现与机械化和自动化的有机结合。机械手虽然目前还不如人手那样灵活,但它具有能不断重复工作和劳动、不知疲劳、不怕危险、抓举重物的力量比人手大等特点,因此,机械手已受到许多部门的重视,并越来越广泛地得到了应用,例如:

(1)机床加工工件的装卸,特别是在自动化车床、组合机床上使用较为普遍。

(2)在装配作业中应用广泛,在电子行业中它可以用来装配印制电路板,在机械行业中它可以用来组装零部件。

(3)可在劳动条件差,单调重复易子疲劳的工作环境工作,以代替人的劳动。

(4)可在危险场合下工作,如军工品的装卸、危险品及有害物的搬运等。

(5)宇宙及海洋的开发。

(6)军事工程及生物医学方面的研究和试验。

由于以上诸多原因,因此在装配生产线上我们用液压自动搬运机械手来完成目的。

工业机械手的发展趋势

(1)工业机器人性能不断提高(高速度、高精度、高可靠性、便于操作和维修),而单机价格不断下降,平均单机价格从91年的万美元降至97年的万美元。

(2)机械结构向模块化、可重构化发展。例如关节模块中的伺服电机、减速机、检测系统三位一体化:由关节模块、连杆模块用重组方式构造机器人整机;国外已有模块化装配机器人产品问市。

(3)工业机器人控制系统向基于PC机的开放型控制器方向发展,便于标准化、网络化;器件集成度提高,控制柜日见小巧,且采用模块化结构:大大提高了系统的可靠性、易操作性和可维修性。

(4)机器人中的传感器作用日益重要,除采用传统的位置、速度、加速度等传感器外,装配、焊接机器人还应用了视觉、力觉等传感器,而遥控机器人则采用视觉、声觉、力觉、触觉等多传感器的融合技术来进行环境建模及决策控制多传感器融合配置技术在产品化系统中已有成熟应用。

(5)虚拟现实技术在机器人中的作用已从仿真、预演发展到用于过程控制如使遥控机器人操作者产生置身于远端作业环境中的感觉来操纵机器人。

(6)当代遥控机器人系统的发展特点不是追求全自治系统,而是致力于操作者与机器人的人机交互控制,即遥控加局部自主系统构成完整的监控遥控操作系统,使智能机器人走出实验室进入实用化阶段。美国发射到火星上的“索杰纳”机器人就是这种系统成功应用的最着名实例。

(7)机器人化机械开始兴起。从94年美国开发出“虚拟轴机床”以来,这种新型装置已成为国际研究的热点之一,纷纷探索开拓其实际应用的领域。我国的工业机器人从80年代“七五”科技攻关开始起步,在国家的支持下,通过“七五”、“八五”科技攻关,目前己基本掌握了机器人操作机的设计制造技术、控制系统硬件和软件设计技术、运动学和轨迹规划技术,生产了部分机器人关键元器件,开发出喷漆、弧焊、点焊、装配、搬运等机器人;其中有130多台套喷漆机器人在二十余家企业的近30条自动喷漆生产线(站)上获得规模应用,弧焊机器人己应用在汽车制造厂的焊装线上。但总的来看,我国的工业机器人技术及其工程应用的水平和国外比还有一定的距离,如:可靠性低于国外产品:机器人应用工程起步较晚,应用领域窄,生产线系统技术与国外比有差距;在应用规模上,我国己安装的国产工业机器人约200台,约占全球已安装台数的万分之四。以上原因主要是没有形成机器人产业,当前我国的机器人生产都是应用户的要求,“一客户,一次重新设计”,品种规格多、批量小、零部件通用化程度低、供货周期长、成本也不低,而且质量、可靠性不稳定。因此迫切需要解决产业化前期的关键技术,对产品进行全面规划,搞好系列化、通用化、模块化设计,积极推进产业化进程.我国的智能机器人和特种机器人在“863”计划的支持下,也取得了不少成果。其中最为突出的是水下机器人,6000m水下无缆机器人的成果居世界领先水平,还开发出直接遥控机器人、双臂协制机器人、爬壁机器人、管道机器人等机种:在机器人视觉、力觉、触有了一定的发展基础。但是在多传感器信息融合控制技术、遥控加局部自主系统遥控机器人、智能装配机器人、机器人化机械等的开发用方面则刚刚起步,与国外先进水平差距较大,需要在原有成绩的基础上,有重点地系统攻关,才能形成系统配套可供实用的技术和产品,以期在“十五”后期立于世界先进行列之中。有了一定的发展基础。但是在多传感器信息融合控制技术、遥控加局部自主系统遥控机器人、智能装配机器人、机器人化机械等的开发用方面则刚刚起步,与国外先进水平差距较大,需要在原有成绩的基础上,有重点地系统攻关,才能形成系统配套可供实用的技术和产品,以期在“十五”后期立于世界先进行列之中。

 国内外研究现状和趋势

目前,在国内外各种机器人和机械手的研究成为科研的热点,其研究的现状和大体趋势如下:

A.机械结构向模块化、可重构化发展。例如关节模块中的伺服电机、减速机、检测系统三位一体化;由关节模块、连杆模块用重组方式构造机器人整机。

B.工业机器人控制系统向基于PC机的开放型控制器方向发展,便于标准化、网络化;器件集成度提高,控制柜日见小巧,且采用模块化结构;大大提高了系统的可靠性、易操作性和可维修性。

C.机器人中的传感器作用日益重要,除采用传统的位置、速度、加速度等传感器外,装配、焊接机器人还应用了视觉、力觉等传感器,而遥控机器人则采用视觉、声觉、力觉、触觉等多传感器的融合技术来进行决策控制;多传感器融合配置技术成为智能化机器人的关键技术。

D.关节式、侧喷式、顶喷式、龙门式喷涂机器人产品标准化、通用化、模块化、系列化设计;柔性仿形喷涂机器人开发,柔性仿形复合机构开发,仿形伺服轴轨迹规划研究,控制系统开发; 

E.焊接、搬运、装配、切割等作业的工业机器人产品的标准化、通用化、模块化、系列化研究;以及离线示教编程和系统动态仿真。

总的来说,大体是两个方向:其一是机器人的智能化,多传感器、多控制器,先进的控制算法,复杂的机电控制系统;其二是与生产加工相联系,满足相对具体的任务的工业机器人,主要采用性价比高的模块,在满足工作要求的基础上,追求系统的经济、简洁、可靠,大量采用工业控制器,市场化、模块化的元件

目前国内机械于主要用于机床加工、铸锻、热处理等方面,数量、品种、性能方面都不能满足工业生产发展的需要。所以,在国内主要是逐步扩大应用范围,重点发展铸造、热处理方面的机械手,以减轻劳动强度,改善作业条件,在应用专用机械手的同时,相应的发展通用机械手,有条件的还要研制示教式机械手、计算机控制机械手和组合机械手等。同时要提高速度,减少冲击,正确定位,以便更好的发挥机械手的作用。此外还应大力研究伺服型、记忆再现型,以及具有触觉、视觉等性能的机械手,并考虑与计算机连用,逐步成为整个机械制造系统中的一个基本单元。  

国外机械手在机械制造行业中应用较多,发展也很快。目前主要用于机床、横锻压力机的上下料,以及点焊、喷漆等作业,它可按照事先指定的作业程序来完成规定的操作。国外机械手的发展趋势是大力研制具有某种智能的机械手。使它具有一定的传感能力,能反馈外界条件的变化,作相应的变更。如位置发生稍许偏差时,即能更正并自行检测,重点是研究视觉功能和触觉功能。目前已经取得一定成绩。目前世界高端工业机械手均有高精化,高速化,多轴化,轻量化的发展趋势。定位精度可以满足微米及亚微米级要求,运行速度可以达到3M/S,量新产品达到6轴,负载2KG的产品系统总重已突破100KG。更重要的是将机械 手、柔性制造系统和柔性制造单元相结合,从而根本改变目前机械制造系统的人工操作状态。同时,随着机械手的小型化和微型化,其应用领域将会突破传统的机械领域,而向着电子信息、生物技术、生命科学及航空航天等高端行业发展。

  液压系统传动原理

液压传动中所需要的元件主要有动力元件、执行元件、控制元件、辅助元件等。其中液压动力元件是为液压系统产生动力的部件,主要包括各种液压泵。液压泵依靠容积变化原理来工作,所以一般也称为容积液压泵。齿轮泵是最常见的一种液压泵,它通过两个啮合的齿轮的转动使得液体进行运动。其他的液压泵还有叶片泵、柱塞泵,在选择液压泵的时候主要需要注意的问题包括消耗的能量、效率、降低噪音。

液压执行元件是用来执行将液压泵提供的液压能转变成机械能的装置,主要包括液压缸和液压马达。液压马达是与液压泵做相反的工作的装置,也就是把液压的能量转换称为机械能,从而对外做功。

液压控制元件用来控制液体流动的方向、压力的高低以及对流量的大小进行预期的控制,以满足特定的工作要求。正是因为液压控制元器件的灵活性,使得液压控制系统能够完成不同的活动。液压控制元件按照用途可以分成压力控制阀、流量控制阀、方向控制阀。

第二章  电机驱动和液压驱动混合式搬运机械手方案设计

电动驱动和液压驱动式搬运机械手的组成及各部分关系概述

机械手主要由执行系统、驱动系统、控制检测系统及智能系统几部分组成:

(1) 执行系统:执行系统是机械手完成锌锭堆码,实现各种运动所必需的机械部件,它包括手部、机身、机架等。

① 手部:机械手为了进行作业而配置的操作机构,又称手爪或抓取机构,它直接抓取锌锭。

②机身:机械手的基础部分,起支撑作用,是支撑手臂的部件,其作用是带动臂部自转、位移。

③机架:机身的支撑部件,其作用是使机身按其预定轨道实现Y方向的位移。

(2) 驱动系统:为执行系统各部件提供动力,并驱动其运动的装置。用的有液压传动和电传动。

(3) 控制系统:通过对驱动系统的控制,使执行系统按照规定的要求进行工作,当发生错误或故障时发出报警信号。

(4) 检测系统:作用是通过各种检测装置、传感装置检测执行机构的运动情况,根据需要反馈给控制系统,与设定进行比较,以保证运动符合要求。

液压式搬运机械手方案设计

  设计要求

通过设计机械手,培养综合运用所学过的基本理论、基本知识和基本方法分析能力和解决问题的能力。

该机械手设计成相当于人工坐着或站着且略有走动的操作空间,手臂在水平方向的移动行程为,手臂回转运动行程范围为360,腰部机构升降行程为。抓取工件为圆柱形轴,外形尺寸为直径,长度。该机械手在PLC控制下可实现单步、连续动作两种工作方式。

  总体方案拟定

     根据设计要求确定总体方案:

机械手采用圆柱坐标型,具有4个自由度的液压搬运机械手

驱动系统:液压传动伺服驱动

控制系统:PLC控制

与其他类型的机械手相比,液压和电机驱动混合式机械手具有反应迅速、抓取力量大、易于控制、定位精度高等特点,它综合了单独液压驱动和电机驱动的不足,把两者的有点融合在一起。本课题拟设计一套4自由度液压搬运机械手,该机械手是应用于某企业的装配生产线的搬运机械手。

本设计中的四由度圆柱坐标型工业机器人的有关技术参数见表2-1

表2-1技术参数表

机械手类型四由度圆柱坐标型
抓取重量30Kg
自由度4(1回转3个移动)
机座内部回转运动,回转角0°-360°,伺服电机驱动

腰部机构伸缩运动,升降范围150mm,液压缸驱动
手臂机构伸缩运动,手臂1伸缩范围120mm,手臂2伸缩范围70mm液压缸驱动
具体运动可见仿真视频。

机械手的系统工作原理及组成

机械手的系统工作原理框图如图1-1所示。          

      

图1-1机械手的系统工作原理框图

机械手的工作原理:机械手主要由执行机构、驱动系统、控制系统以及位置检测装置等所组成。在PLC程序控制的条件下,采用液压传动方式,来实现执行机构的相应部位发生规定要求的,有顺序,有运动轨迹,有一定速度和时间的动作。同时按其控制系统的信息对执行机构发出指令,必要时可对机械手的动作进行监视,当动作有错误或发生故障时即发出报警信号。位置检测装置随时将执行机构的实际位置反馈给控制系统,并与设定的位置进行比较,然后通过控制系统进行调整,从而使执行机构以一定的精度达到设定位置.

(一)执行机构

包括手部、手腕、手臂和立柱等部件,有的还增设行走机构。

1、手部

即与物件接触的部件。由于与物件接触的形式不同,可分为夹持式和吸附式手在本课题中我们采用夹持式手部结构。夹持式手部由手指(或手爪)和传力机构所构成。手指是与物件直接接触的构件,常用的手指运动形式有回转型和平移型。回转型手指结构简单,制造容易,故应用较广泛。平移型应用较少,其原因是结构比较复杂,但平移型手指夹持圆形零件时,工件直径变化不影响其轴心的位置,因此适宜夹持直径变化范围大的工件。手指结构取决于被抓取物件的表面形状、被抓部位(是外廓或是内孔)和物件的重量及尺寸。而传力机构则通过手指产生夹紧力来完成夹放物件的任务。传力机构型式较多时常用的有:滑槽杠杆式、连杆杠杆式、斜面杠杆式、齿轮齿条式、丝杠螺母弹簧式和重力式等。

2、手腕

是连接手部和手臂的部件,并可用来调整被抓取物件的方位(即姿势)

3、手臂

手臂是支承被抓物件、手部、手腕的重要部件。手臂的作用是带动手指去抓取物件,并按预定要求将其搬运到指定的位置。工业机械手的手臂通常由驱动手臂运动的部件(如油缸、液压缸、齿轮齿条机构、连杆机构、螺旋机构和凸轮机构等)与驱动源(如液压、液压或电机等)相配合,以实现手臂的各种运动。

4、立柱

立柱是支承手臂的部件,立柱也可以是手臂的一部分,手臂的回转运动和升降(或俯仰)运动均与立柱有密切的联系。机械手的立柱因工作需要,有时也可作横向移动,即称为可移式立柱。

5、机座

机座是机械手的基础部分,机械手执行机构的各部件和驱动系统均安装于机座上,故起支撑和连接的作用。

(二)驱动系统

驱动系统是驱动工业机械手执行机构运动的。它由动力装置、调节装置和辅助装置组成。常用的驱动系统有液压传动、 液压传动、机械传动。

(三)控制系统

控制系统是支配着工业机械手按规定的要求运动的系统。目前工业机械手的控制系统一般由程序控制系统和电气定位(或机械挡块定位)系统组成。该机械手采用的是PLC程序控制系统,它支配着机械手按规定的程序运动,并记忆人们给予机械手的指令信息(如动作顺序、运动轨迹、运动速度及时间),同时按其控制系统的信息对执行机构发出指令,必要时可对机械手的动作进行监视,当动作有错误或发生故障时即发出报警信号。

(四)位置检测装置

控制机械手执行机构的运动位置,并随时将执行机构的实际位置反馈给控制系统,并与设定的位置进行比较,然后通过控制系统进行调整,从而使执行机构以一定的精度达到设定位置.

 机械手腰座结构的设计要求

     工业机器人腰座,就是圆柱坐标机器人,球坐标机器人及关节型机器人的回转基座。它是机器人的第一个回转关节,机器人的运动部分全部安装在腰座上,它承受了机器人的全部重量。在设计机器人腰座结构时,要注意以下设计原则:

1.腰座要有足够大的安装基面,以保证机器人在工作时整体安装的稳定性。

2.腰座要承受机器人全部的重量和载荷,因此,机器人的基座和腰部轴及轴承的结构要有足够大的强度和刚度,以保证其承载能力。

3.机器人的腰座是机器人的第一个回转关节,它对机器人末端的运动精度影响最大,因此,在设计时要特别注意腰部轴系及传动链的精度与刚度的保证。

4.腰部的回转运动要有相应的驱动装置,它包括驱动器(电动、液压及气动)及减速器。驱动装置一般都带有速度与位置传感器,以及制动器。

5.腰部结构要便于安装、调整。腰部与机器人手臂的联结要有可靠的定位基准面,以保证各关节的相互位置精度。要设有调整机构,用来调整腰部轴承间隙及减速器的传动间隙。

6.为了减轻机器人运动部分的惯量,提高机器人的控制精度,一般腰部回转运动部分的壳体是由比重较小的铝合金材料制成,而不运动的基座是用铸铁或铸钢材料制成。

 设计具体采用方案

腰座回转的驱动形式要么是电机通过减速机构来实现,要么是通过摆动液压缸或液压马达来实现,目前的趋势是用前者。因为电动方式控制的精度能够很高,而且结构紧凑,不用设计另外的液压系统及其辅助元件。考虑到腰座是机器人的第一个回转关节,对机械手的最终精度影响大,故采用电机驱动来实现腰部的回转运动。一般电机都不能直接驱动,考虑到转速以及扭矩的具体要求,采用大传动比的齿轮传动系统进行减速和扭矩的放大。因为齿轮传动存在着齿侧间隙,影响传动精度,故采用一级齿轮传动,采用大的传动比(大于100),同时为了减小机械手的整体结构,齿轮采用高强度、高硬度的材料,高精度加工制造,尽量减小因齿轮传动造成的误差。腰座具体结构如图2-3所示:

图2-3  腰座结构图

机械手手臂的结构设计

 机械手手臂的设计要求

    机器人手臂的作用,是在一定的载荷和一定的速度下,实现在机器人所要求的工作空间内的运动。在进行机器人手臂设计时,要遵循下述原则;

1.应尽可能使机器人手臂各关节轴相互平行;相互垂直的轴应尽可能相交于一点,这样可以使机器人运动学正逆运算简化,有利于机器人的控制。

2.机器人手臂的结构尺寸应满足机器人工作空间的要求。工作空间的形状和大小与机器人手臂的长度,手臂关节的转动范围有密切的关系。但机器人手臂末端工作空间并没有考虑机器人手腕的空间姿态要求,如果对机器人手腕的姿态提出具体的要求,则其手臂末端可实现的空间要小于上述没有考虑手腕姿态的工作空间。

3.为了提高机器人的运动速度与控制精度,应在保证机器人手臂有足够强度和刚度的条件下,尽可能在结构上、材料上设法减轻手臂的重量。力求选用高强度的轻质材料,通常选用高强度铝合金制造机器人手臂。目前,在国外,也在研究用碳纤维复合材料制造机器人手臂。碳纤维复合材料抗拉强度高,抗振性好,比重小(其比重相当于钢的1/4,相当于铝合金的2/3),但是,其价格昂贵,且在性能稳定性及制造复杂形状工件的工艺上尚存在问题,故还未能在生产实际中推广应用。目前比较有效的办法是用有限元法进行机器人手臂结构的优化设计。在保证所需强度与刚度的情况下,减轻机器人手臂的重量。

4.机器人各关节的轴承间隙要尽可能小,以减小机械间隙所造成的运动误差。因此,各关节都应有工作可靠、便于调整的轴承间隙调整机构。

5.机器人的手臂相对其关节回转轴应尽可能在重量上平衡,这对减小电机负载和提高机器人手臂运动的响应速度是非常有利的。在设计机器人的手臂时,应尽可能利用在机器人上安装的机电元器件与装置的重量来减小机器人手臂的不平衡重量,必要时还要设计平衡机构来平衡手臂残余的不平衡重量。

6.机器人手臂在结构上要考虑各关节的限位开关和具有一定缓冲能力的机械限位块,以及驱动装置,传动机构及其它元件的安装。

 设计具体采用方案 

机械手的垂直手臂升降和水平手臂的伸缩运动都为直线运动。直线运动的实现一般是气动传动,液压传动以及电动机驱动滚珠丝杠来实现。考虑到搬运工件的重量较大,考虑加工工件的质量达30KG,属中型重量,同时考虑到机械手的动态性能及运动的稳定性,安全性,对手臂的刚度有较高的要求。综合考虑,两手臂的驱动均选择液压驱动方式,通过液压缸的直接驱动,液压缸既是驱动元件,又是执行运动件,不用再设计另外的执行件了;而且液压缸实现直线运动,控制简单,易于实现计算机的控制。

因为液压系统能提供很大的驱动力,因此在驱动力和结构的强度都是比较容易实现的,关键是机械手运动的稳定性和刚度的满足。因此手臂液压缸的设计原则是缸的直径取得大一点(在整体结构允许的情况下),再进行强度的较核。

同时,因为控制和具体工作的要求,机械手的手臂的结构不能太大,若仅仅通过增大液压缸的缸径来增大刚度,是不能满足系统刚度要求的。因此,在设计时另外增设了导杆机构,小臂增设了两个导杆,与活塞杆一起构成等边三角形的截面形式,尽量增加其刚度;大臂增设了四个导杆,成正四边形布置,为减小质量,各个导杆均采用空心结构。通过增设导杆,能显着提高机械手的运动刚度和稳定性,比较好的解决了结构、稳定性的问题。图形如下:

 机器人手腕结构的设计要求

1.机器人手腕的自由度数,应根据作业需要来设计。机器人手腕自由度数目愈多,各关节的运动角度愈大,则机器人腕部的灵活性愈高,机器人对对作业的适应能力也愈强。但是,自由度的增加,也必然会使腕部结构更复杂,机器人的控制更困难,成本也会增加。因此,手腕的自由度数,应根据实际作业要求来确定。在满足作业要求的前提下,应使自由度数尽可能的少。一般的机器人手腕的自由度数为2至3个,有的需要更多的自由度,而有的机器人手腕不需要自由度,仅凭受臂和腰部的运动就能实现作业要求的任务。因此,要具体问题具体分析,考虑机器人的多种布局,运动方案,选择满足要求的最简单的方案。

2.机器人腕部安装在机器人手臂的末端,在设计机器人手腕时,应力求减少其重量和体积,结构力求紧凑。为了减轻机器人腕部的重量,腕部机构的驱动器采用分离传动。腕部驱动器一般安装在手臂上,而不采用直接驱动,并选用高强度的铝合金制造。

3.机器人手腕要与末端执行器相联,因此,要有标准的联接法兰,结构上要便于装卸末端执行器。

4.机器人的手腕机构要有足够的强度和刚度,以保证力与运动的传递。

    5.要设有可靠的传动间隙调整机构,以减小空回间隙,提高传动精度。

6.手腕各关节轴转动要有限位开关,并设置硬限位,以防止超限造成机械损坏。

设计具体采用方案

    通过对机械手工作场合和工作需求的具体分析,在满足系统工艺要求的前提下提高安全和可靠性,为使机械手的结构尽量简单,降低控制的难度,本设计手腕不增加自由度,实践证明这是完全能满足作业要求的,4个自由度来实现材料的搬运完全足够。具体的手腕(手臂手爪联结梁)结构见图2-4。

图2-4手爪联结结构

机械手末端执行器的设计要求

机器人末端执行器是安装在机器人手腕上用来进行某种操作或作业的附加装置。机器人末端执行器的种类很多,以适应机器人的不同作业及操作要求。末端执行器可分为搬运用、加工用和测量用等。

搬运用末端执行器是指各种夹持装置,用来抓取或吸附被搬运的物体。

加工用末端执行器是带有喷、焊、砂轮、铣刀等加工工具的机器人附加装置,用来进行相应的加工作业。

测量用末端执行器是装有测量头或传感器的附加装置,用来进行测量及检验作业。在设计机器人末端执行器时,应注意以下问题;

1.机器人末端执行器是根据机器人作业要求来设计的。一个新的末端执行器的出现,就可以增加一种机器人新的应用场所。因此,根据作业的需要和人们的想象力而创造的新的机器人末端执行器,将不断的扩大机器人的应用领域。

2.机器人末端执行器的重量、被抓取物体的重量及操作力的总和机器人容许的负荷力。因此,要求机器人末端执行器体积小、重量轻、结构紧凑。

3.机器人末端执行器的万能性与专用性是矛盾的。万能末端执行器在结构上很复杂,甚至很难实现,例如,仿人的万能机器人灵巧手,至今尚未实用化。目前,能用于生产的还是那些结构简单、万能性不强的机器人末端执行器。从工业实际应用出发,应着重开发各种专用的、高效率的机器人末端执行器,加之以末端执行器的快速更换装置,以实现机器人多种作业功能,而不主张用一个万能的末端执行器去完成多种作业。因为这种万能的执行器的结构复杂且造价昂贵。

4.通用性和万能性是两个概念,万能性是指一机多能,而通用性是指有限的末端执行器,可适用于不同的机器人,这就要求末端执行器要有标准的机械接口(如法兰),使末端执行器实现标准化和积木化。

5.机器人末端执行器要便于安装和维修,易于实现计算机控制。用计算机控制最方便的是电气式执行机构。因此,工业机器人执行机构的主流是电气式,其次是液压式和气压式(在驱动接口中需要增加电-液或电-气变换环节)。

设计具体采用方案

结合具体的工作情况,本设计采用3爪式定位抓起的手爪。通过液压驱动张开或缩收手爪。手指的最小开度由加工工件的直径来调定。本设计按照工件的直径为25mm来设计。手爪的具体结构形式如图-5所示:

  

图2-5机械手末端执行手爪结构图

机器人电动驱动系统伺服驱动器

(1)步进电机驱动器

步进电机的控制装置主要包括脉冲发生器,环行分配器和功率放大器等几部分组成。

    脉冲发生器可以按照起、制动及调速要求改变频率、以控制步进电机。环行分配器是控制步进电机各绕组按一定的次序通过的环节。它的作用是把脉冲发生器送来的一系列脉冲信号按照一定的循环规律依次分配给各绕组,以使步进电机按着一定的规律运动。

功率放大器的作用是将环行分配器输出的毫安级电流放大成安培级电流以驱动步进电机。目前功率放大器多采用高低压驱动电路。这种电路有高、低压二组电源。当绕组刚通电瞬间让绕组接通高电压,从而使各相电流迅速建立。而当达到步进电机额定电流时仅以低电压给各相绕组供电。高电压加入的时间长短由控制电路来实现。

设计具体采用方案 

   具体到本设计,在分析了具体工作要求后,综合考虑各个因素。机械手腰部的旋转运动需要一定的定位控制精度,故采用步进电机驱动来实现;因为采用液压执行缸来做水平手臂和垂直手臂,故大小臂均采用液压驱动;同时考虑随着机床加工的工件的不同,水平手臂伸出长度是不同的。因此,要求水平手臂具有伺服定位能力,故采用电液伺服液压缸进行驱动。而手爪的张开和夹紧通过液压柱塞缸活塞来实现。

第三章 尺寸设计与校核

手臂伸缩液压缸的尺寸设计与校核

 手臂伸缩液压缸的尺寸设计

 1. 在校核尺寸时,只需校核液压缸内径=60mm,半径R=32mm的液压缸的尺寸满足使用要求即可,设计使用压强,

  则驱动力:

        

          

2.测定手腕质量为50kg,设计加速度,则惯性力:

 

3.考虑活塞等的摩擦力,设定摩擦系数,

     

     总受力

                

          

   所以标准CTA液压缸的尺寸符合实际使用驱动力要求。

 导向装置

液压驱动的机械手臂在进行伸缩运动时,为了防止手臂绕轴线转动,以保证手指的正确方向,并使活塞杆不受较大的弯曲力矩作用,以增加手臂的刚性,在设计手臂结构时,应该采用导向装置。具体的安装形式应该根据本设计的具体结构和抓取物体重量等因素来确定,同时在结构设计和布局上应该尽量减少运动部件的重量和减少对回转中心的惯量。

导向杆目前常采用的装置有单导向杆,双导向杆,四导向杆等,在本设计中才用单导向杆来增加手臂的刚性和导向性。

 平衡装置

在本设计中,为了使手臂的两端能够尽量接近重力矩平衡状态,减少手抓一侧重力矩对性能的影响,故在手臂伸缩液压缸一侧加装平衡装置,装置内加放砝码,砝码块的质量根据抓取物体的重量和液压缸的运行参数视具体情况加以调节,务求使两端尽量接衡。

手臂升降液压缸的尺寸设计与校核

 尺寸设计

液压缸运行长度设计为=150mm,液压缸内径为=80mm,半径R=50mm,液压缸运行速度,加速度时间=,压强p=,则驱动力:

        

        

 尺寸校核

1.测定手腕质量为100kg,则重力:

      

2.设计加速度,则惯性力:

    

3.考虑活塞等的摩擦力,设定一摩擦系数,

          

         总受力

                    

               

           所以设计尺寸符合实际使用要求。

 腰部传动负载作回转运动的设计与校核

腰部电机传动的设计和校核

负载额定功率:                                (3-1)

负载加速功率:                  (3-2)

负载力矩(折算到电机轴):     

               (3-3)

负载GD(折算到电机轴):    

                (3-4)

起动时间:      

            (3-5)

制动时间:        

            (3-6)

  式中,-----为额定功率,KW;

-----为加速功率,KW;

-----为负载轴回转速度,r/min;

-----为电机轴回转速度,r/min;

-----为负载的速度,m/min;

-----为减速机效率;

-----为摩擦系数;

-----为负载转矩(负载轴),;

-----为电机启动最大转矩,;

-----为负载转矩(折算到电机轴上),;

-----为负载的,;

-----为负载(折算到电机轴上),;

-----为电机的,;

    因为腰部回转运动只存在摩擦力矩,在回转圆周方向上不存在其他的转矩,则在回转轴上有;

                  (3-7)

式中,-----为滚动轴承摩擦系数,取;

-----为机械手本身与负载的重量之和,取100;

-----为回转轴上传动大齿轮分度圆半径,R=240;

带入数据,计算得      =;

     同时,腰部回转速度定为=5r/min;传动比定为1/120;

且,  带入数据得:   =。

将其带入上(3-24)~(3-30)式,得:

  

启动时间         ; 

制动时间         ;

折算到电机轴上的负载转矩为:。

第四章  机械手的PLC控制系统设计

 PLC的工作原理

PLC有两种基本的工作状态,即运行状态(RUN)与停止状态(STOP)状态。PLC在运行(RUN)工作模式时,反复不停地重复执行图所示的5个阶段的任务;在停止(STOP)工作模式时,只执行上面两个阶段任务。PLC这种周而复始的循环工作方式称为扫描工作方式,或称为扫描循环(Scan CYc1e)。 

在内部处理阶段,PLC完成硬件自检测和将监控定时器复位等内部工作。

在通信服务阶段,PLC处理与计算机、编程器和别的智能装置的通信。响应通信命令,更新编程器的显示内容。

在PLC的存储器中设置了一片区域,用来存放输入信号和输出信号的状态,它们分别称为输入映像寄存器和输出映像寄存器(见图2)。 PLC梯形图中其他的编程元件也有对应的映像存储区,它们统称为元件映像寄存器。

在输入处理阶段,PLC将外部输入电路的接通/断开状态读入并输入映像寄存器。外部输入电路接通时,对应的输入映像寄存器为1状态,梯形图中对应的输入继电器的常开触点接通,常闭触点断开,反之亦反。

在程序执行阶段,即使外部输入电路的状态发生了变化,输入映像寄存器的状态也不会随之而变,输入信号变化了的状态只能在下一个扫描周期的输入处理阶段被读入。 

PLC的用户程序由若干条指令组成,指令在存储器中顺序排列。在没有跳转指令时,CPU从第一条指令开始,逐条顺序地执行用户程序,直到用户程序结束。执行指令时,从元件映像寄存器中将有关编程元件的0/1状态读出来,并根据指令的要求执行相应的逻辑运算,最后的运算结果写入到线圈或输出类指令对应的元件映像寄存器中(见图6-1)。因此,各编程元件的映像寄存器(输入映像寄存器除外)的内容随着程序的执行而变化。 

在输出处理阶段,CPU将所有输出映像寄存器的值送到输出模块。梯形图中某一输出继电器的线圈 “通电”时,对应的输出映像寄存器为1状态,继电器型输出模块中对应的硬件继电器的线圈通电,其常开触点闭合,使外部负载通电工作,反之亦反。PLC的梯形图程序就是这样通过输入、输出映象寄存器与外部输入电路和外部负载联系起来的。

扫描过程                      PLC的外部接线图与梯形图

                            图4-1

执行程序时,读写的是输入/输出映象寄存器的值,而不是直接对实际的I/O点进行操作,这样做有以下好处: 

1、程序执行阶段的输入值是固定的,程序执行完后再用输出映象寄存器的值更新输出点,使系统的运行稳定。 

2、用户程序读写I/O映象寄存 器比读写I/O点快得多,这样可以提高程序的执行速度。 

3、扫描工作方式具有较好的抗干扰能力,在一个扫描周期中, 输入处理仅占极少部分时间,在大部分时间内,干扰信号不会被采集进PLC。

可编程控制器是专为工业控制而开发的装置。PLC多采用下列适合其领域的编程语言表达式。各个厂家的编程语言(包括梯形图、命令语句等)的表达形式虽不一致,但其原理大同小异。

 可编程序控制器的选择及工作过程

 可编程序控制器的选择

目前,国际上生产可编程序控制器的厂家很多,如日本三菱公司的F系列PC,德国西门子公司的SIMATIC N5系列PC、日本OMRON(立石)公司的C型、P型PC等。考虑到本机械手的输入输出点不多,工作流程较简单,同时考虑到制造成本,因此在本次设计中选择了OMRON公司的C28P型可编程序控制器。

 可编程序控制器的工作过程

可编程序控制器是通过执行用户程序来完成各种不同控制任务的。为此采用了循环扫描的工作方式。具体的工作过程可分为四个阶段。

第一阶段是初始化处理。

可编程序控制器的输入端子不是直接与主机相连,CPU对输入输出状态的询问是针对输入输出状态暂存器而言的。输入输出状态暂存器也称为I/0状态表.该表是一个专门存放输入输出状态信息的存储区。其中存放输入状态信息的存储器叫输入状态暂存器;存放输出状态信息的存储器叫输出状态暂存器。开机时,CPU首先使I/0状态表清零,然后进行自诊断。当确认其硬件工作正常后,进入下一阶段。

第二阶段是处理输入信号阶段。

在处理输入信号阶段,CPU对输入状态进行扫描,将获得的各个输入端子的状态信息送到I/0状态表中存放。在同一扫描周期内,各个输入点的状态在I/0状态表中一直保持不变,不会受到各个输入端子信号变化的影响,因此不能造成运算结果混乱,保证了本周期内用户程序的正确执行。

第三阶段是程序处理阶段。

当输入状态信息全部进入I/0状态表后,CPU工作进入到第三个阶段。在这个阶段中,可编程序控制器对用户程序进行依次扫描,并根据各I/0状态和有关指令进行运算和处理,最后将结果写入I/0状态表的输出状态暂存器中。

第四阶段是输出处理阶段。

    CPU对用户程序已扫描处理完毕,并将运算结果写入到I/0状态表状态暂存器中。此时将输入信号从输出状态暂存器中取出,送到输出锁存电路,驱动输出继电器线圈,控制被控设备进行各种相应的动作。然后,CPU又返回执行下一个循环的扫描周期。

 可编程序控制器的使用步骤

在可编程序控制器与被控对象(机器、设备或生产过程)构成一个自动控制系统时,通常以七个步骤进行:

(1)系统设计

即确定被控对象的工作原理,控制要求,动作及动作顺序。

(2)I/0分配

即确定哪些信号是送到可编程序控制器的,并分配给相应的输入端号;哪些信号是由可编程序控制器送到被控对象的,并分配相应的输出端号.此外,对用到的可编程序控制器内部的计数器、定时器等也要进行分配。可编程序控制器是通过编号来识别信号的。

(3)画梯形图

它与继电器控制逻辑的梯形图概念相同,表达了系统中全部动作的相互关系。如果使用图形编程器(LCD或CRT),则画出梯形图相当于编制出了程序,可将梯形图直接送入可编程序控制器。对简易编程器,则往往要经过下一步的助记符程序转换过程。

(4)助记符机器程序

相当于微机的助记符程序,是面向机器的(即不同厂家的可编程序控制器,助记符指令形式不同),用简易编程器时,应将梯形图转化成助记符程序,才能将其输入到可编程序控制器中。

(5)编制程序

即检查程序中每条语法错误,若有则修改。这项工作在编程器上进行。

(6)调试程序

即检查程序是否能正确完成逻辑要求,不合要求,可以在编程器上修改。程序设计(包括画梯形图、助记符程序、编辑、甚至调试)也可在别的工具上进行。如IBM-PC机,只要这个机器配有相应的软件。

(7)保存程序

调试通过的程序,可以固化在EPROM中或保存在磁盘上备用。

 机械手可编程序控制器控制方案

 控制系统的工作原理及控制要求

1.控制对象为圆柱座标液压机械手。它的手臂具有三个自由度,即水平方向的伸、缩;竖直方向的上、下;绕竖直轴的顺时针方向旋转及逆时针方向旋转。另外,其末端执行装置— 机械手,还可完成抓、放功能。以上各动作均采用液压方式驱动,即用五个二位五通电磁阀(每个阀有两个线圈,对应两个相反动作)分别控制五个液压缸,使机械手完成伸、缩、上、下、旋转及机械手抓放动作。其中旋转运动用一组齿轮齿条,使液压缸的直线运动转化为旋转运动。这样,可用PLC的8个输出端与电磁阀的8个线圈相连,通过编程,使电磁阀各线圈按一定序列激励,从而使机械手按预先安排的动作序列工作.如果欲改变机械手的动作,不需改变接线,只需将程序中动作代码及顺序稍加修改即可。另外,除抓放外,其余六个动作末端均放置一限位开关,以检测动作是否到位,如果某动作没有到位,则出错指示灯亮。

2.控制要求

为了满足生产需要,机械手应设置手动工作方式、单动工作方式和自动工作方式。

(1)手动工作方式

便于对设备进行调整和检修,设置手动工作方式。用按钮对机械手每一动作单独进行控制。

(2)单动工作方式

从原点开始,按照自动工作循环的步序,每按下一次起动按钮,机械手完成一步的工作后,自动停止。

(3)自动工作方式

按下起动按钮,机械手从原点开始,按工序自动反复连续工作,直到按下停止按钮,机械手在完成最后一个周期的动作后,返回原点自动停机。

  液压机械手的工作流程

液压机械手的工作流程如下: 

(1)当按下机械手启动按钮之后,首先立柱右转电磁阀通电,机械手左转,至左限位开关动作。

(2)立柱上升电磁阀通电,立柱上升,至上限位开关动作。

(3)手臂1伸长电磁阀通电,手臂开始伸长,至限位开关动作。

(4)手臂2伸长电磁阀通电,手臂开始伸长,至限位开关动作。

(5)手爪张开电磁阀通电,手爪张开,至限位开关动作

(6)手爪缩收电磁阀通电,手爪缩收,至限位开关动作

(7)手臂1电磁阀通电收缩,手臂开始收缩,至限位开关动作

(8)立柱下降电磁阀通电,立柱下降,至下限位开关动作。

(9)立柱右转电磁阀通电,机械手左转,至左限位开关动作。

(10)完成一次循环,然后重复以上循环动作。

(11)按下停止按钮或停电时,机械手停止在现行的工步上,重新启动时,机械手按上一工步继续工作。

第五章四自由度机械手运动仿真

运动学仿真过程及定义分析

运动学仿真过程

通过PRO/E三维软件设计出机械手的各个零件。把各个零件装配好,在PRO/E软件中,在机构的选项中对机械手进行仿真。仿真的过程如下,具体见视频。

具体运动过程见视频。

定义分析

  

手爪的定义分析图                柱塞的定义分析图

      

手臂2的定义分析图             手臂1的定义分析图

                             立柱的定义分析图                                  

结 论

1.通过此次毕业设计,使我了解了机械手的很多相关知识。使我也了解了当前国内外在此方面的一些先进生产和制造技术,了解了机械手设计的一般过程,通过对机械手的结构设计作了系统的设计,掌握了一定的机械设计方面的基础,为以后的工作学习创造了一定基础。

  2、本次设计的是电机和液压驱动机械手,相对于专用机械手,通用机械手的自由度可变,控制程序可调,因此适用面更广。

3、采用液压和电机传动,动作迅速,反应灵敏同时定位精确,能实现过载保护,便于自动控制。工作环境适应性好,不会因环境变化影响传动及控制性能。阻力损失和泄漏较小,不会污染环境。同时成本低廉。

4、机械手采用PLC控制,具有可靠性高、改变程序灵活等优点,无论是进行时间控制还是行程控制或混合控制,都可通过设定PLC程序来实现。可以根据机械手的动作顺序修改程序,使机械手的通用性更强。

致   谢

本文是在我尊敬的谢老师悉心指导下完成的。老师严谨的治学态度和精益求精的工作作风让我受益匪浅。在此,我首先向老师表示诚挚的感谢,并致以崇高的敬意! 在这次课程设计的过程中,当理论和实践相结合时,我深刻的认识到,仅仅靠积累的课本知识是远远不够的。尤其对于自身而言,知识的零碎、有限都给我的设计带来了很大的困难,从这些困难我意识到我应该马上加倍努力学习,进而提高自身的技术水平和专业知识,在今后的工作中不断提高自己,充实自己

    在本次设计中,大家互相帮助,互相学习,充分发挥了各自的才能。大家一起讨论问题,一起虚心的请教指导老师,将一个个难题逐步攻克,才使得课程设计最终能够成功的完成。这次的设计对我而言,是我在大学四年中做的很有意义一个学习内容。依我来看,我的设计,还有不足之处,还请老师加以指正。我将在今后的工作中更加努力,认真的学习。

    最后,我要十分的感谢指导老师不倦的教诲和同学们的热心帮助。

                                                            

参考文献:

[1]蔡自兴.机器人学的发展趋势和发展战略.机器人技术,2001. 4

[2]王雄耀.近代液压机器人(液压机械手)的发展及应用.液压液压与密封, 

[3]郑洪生.液压传动及控制.北京:机械工业出版社,1987

[4]史国生主编.PLC在机械手步进控制中的应用.中国工控信息网,2005.

[5]李超主编.气动通用上下料机械手的研究与开发.陕西科技大学,2003.

[6]张军,封志辉主编.多工步搬运机械手的设计.机械设计,2004.

[7]李允文主编.工业机械手设计.机械工业出版社,1996.

[8]金茂青,曲忠萍,张桂华等主编.国外工业机械人发展的态势分析.机械人技术与应用,2001.

[9]李明主编.单臂回转机械手设计.制造技术与机床,2004

[10]徐永生.液压传动.北京:机械工业出版社,1990, 5

文档

搬运机械手的结构和控制系统设计

机电工程学院机电一体化系统设计课程设计设计题目:专业:学号:姓名:指导老师:毕业论文(设计)任务书一、题目:搬运机械手的结构和控制系统设计二、研究内容与目标:本设计主要的研究内容是1.用proe绘制搬运机械手三维立体图2.用proe转配搬运机械手及制作仿真动画并生成仿真视频制作3.利用PLC实现控制系统设计4.设计说明书(1份)目标:让搬运机械手能搬运物品,掌握机械手的设计原理和控制过程三、研究方法:通过不断地查找资料,研究工业机械手的作用,并不断分析最后制作出工业上需要的机械手。四、主要参考
推荐度:
  • 热门焦点

最新推荐

猜你喜欢

热门推荐

专题
Top