最新文章专题视频专题问答1问答10问答100问答1000问答2000关键字专题1关键字专题50关键字专题500关键字专题1500TAG最新视频文章推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37视频文章20视频文章30视频文章40视频文章50视频文章60 视频文章70视频文章80视频文章90视频文章100视频文章120视频文章140 视频2关键字专题关键字专题tag2tag3文章专题文章专题2文章索引1文章索引2文章索引3文章索引4文章索引5123456789101112131415文章专题3
当前位置: 首页 - 正文

人教版数学八年级上册期中考试试卷

来源:动视网 责编:小OO 时间:2025-09-30 01:13:19
文档

人教版数学八年级上册期中考试试卷

人教版数学八年级上册期中考试试题(时间:120分钟满分:120分)一、选择题(每小题3分,共30分)1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是(A)2.与点P(2,-5)关于x轴对称的点是(D)A.(-2,-5)B.(2,-5)C.(-2,5)D.(2,5)3.如图,∠1=100°,∠2=145°,那么∠3=(B)A.55°B.65°C.75°D.85°,第3题图),第4题图),第6题图),第7题图)4.如图,将直角三角尺的直角顶点靠在直尺上,且斜边与这根直尺平行,那么在
推荐度:
导读人教版数学八年级上册期中考试试题(时间:120分钟满分:120分)一、选择题(每小题3分,共30分)1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是(A)2.与点P(2,-5)关于x轴对称的点是(D)A.(-2,-5)B.(2,-5)C.(-2,5)D.(2,5)3.如图,∠1=100°,∠2=145°,那么∠3=(B)A.55°B.65°C.75°D.85°,第3题图),第4题图),第6题图),第7题图)4.如图,将直角三角尺的直角顶点靠在直尺上,且斜边与这根直尺平行,那么在
人教版数学八年级上册期中考试试题

(时间:120分钟  满分:120分)

一、选择题(每小题3分,共30分)

1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是( A )

2.与点P(2,-5)关于x轴对称的点是( D )

A.(-2,-5)  B.(2,-5)  C.(-2,5)  D.(2,5)

3.如图,∠1=100°,∠2=145°,那么∠3=( B )

A.55°  B.65°  C.75°  D.85°

,第3题图)   ,第4题图)   ,第6题图)   ,第7题图)

4.如图,将直角三角尺的直角顶点靠在直尺上,且斜边与这根直尺平行,那么在形成的这个图中与∠α互余的角共有( C )

A.4个  B.3个  C.2个  D.1个

5.下列说法中错误的是( B )

A.一个三角形中至少有一个角不小于60°

B.直角三角形只有一条高

C.三角形的中线不可能在三角形外部

D.三角形的中线把三角形分成面积相等的两部分

6.如图,在△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC,AD,AB于点E,O,F,则图中全等三角形的对数是( D )

A.1对  B.2对  C.3对  D.4对

7.如图,把长方形纸片ABCD沿对角线折叠,设重叠部分为△EBD,那么,有下列说法:①△EBD是等腰三角形,EB=ED;②折叠后∠ABE和∠CBD一定相等;③折叠后得到的图形是轴对称图形;④△EBA和△EDC一定是全等三角形.其中正确的有( C )

A.1个  B.2个  C.3个  D.4个

8.如图,在△ABC中,BC>AB>AC,甲,乙两人想在BC上取一点P,使得∠APC=2∠ABC,其作法如下:(甲)作AB的中垂线,交BC于P点,则P即为所求;(乙)以B为圆心,AB长为半径画弧,交BC于P点,则P即为所求,对于两人的作法,下列判断正确的是( C )

A.两人皆正确  B.两人皆错误

C.甲正确,乙错误  D.甲错误,乙正确

9.如图,在△ABC中,AB=AC,∠A=30°,以B为圆心,BC的长为半径画弧,交AC于点D,连接BD,则∠ABD=( B )

A.30°  B.45°

C.60°  D.90°

10.已知坐标平面内一点A(2,-1),O为原点,P是x轴上一个动点,如果以点P,O,A为顶点的三角形是等腰三角形,那么符合条件的动点P的个数为( C )

A.2个  B.3个  C.4个  D.5个

二、填空题(每小题3分,共18分)

11.一木工师傅现有两根木条,木条的长分别为40 cm和30 cm,他要选择第三根木条,将它们钉成一个三角形木架.设第三根木条长为x cm,则x的取值范围是__10_cm<x<70_cm__.

12.如图,AE∥BD,C是BD上的点,且AB=BC,∠ACD=105°,则∠EAB=__30°__.

,第12题图)   ,第13题图)   ,第14题图)   ,第15题图)

13.如图,在△ABC中,AB=AC=6,BC=4.5,分别以A,B为圆心,4为半径画弧交于两点,过这两点的直线交AC于点D,连接BD,则△BCD的周长是__10.5__.

14.如图,已知PA⊥ON于A,PB⊥OM于B,且PA=PB,∠MON=50°,∠OPC=30°,则∠PCA=__55°__.

15.在平面直角坐标系中,点A(2,0),B(0,4),作△BOC,使△BOC与△ABO全等,则点C坐标为__(-2,0)或(2,4)或(-2,4)__.

16.如图,P为∠AOB内一定点,M,N分别是射线OA,OB上一点,当△PMN周长最小时,∠OPM=50°,则∠AOB=__40°__.

三、解答题(共72分)

17.(8分)如图,在△ABC中.

(1)画出BC边上的高AD和中线AE;

(2)若∠B=30°,∠ACB=130°,求∠BAD和∠CAD的度数.

解:(1)略

(2)∵AD是△ABC的高,∴∠ADB=90°,∵∠ACB=130°,∴∠ACD=180°-130°=50°,又∵三角形的内角和等于180°,∴∠BAD=180°-30°-90°=60°,∠CAD=180°-50°-90°=40°

18.(8分)如图,在平面直角坐标系xOy中,A(-1,5),B(-1,0),C(-4,3).

(1)求出△ABC的面积;

(2)在图中作出△ABC关于y轴的对称图形△A1B1C1;

(3)写出点A1,B1,C1的坐标.

解:(1)S△ABC=×5×3= (2)作图略 (3)A1(1,5),B1(1,0),C1(4,3)

19.(6分)如图,有公路l1同侧、l2异侧的两个城镇A,B,电信部门要修建一座信号发射塔,按照设计要求,发射塔到两个城镇A,B的距离必须相等,到两条公路l1,l2的距离也必须相等,发射塔C应修建在什么位置?请用尺规作图找出所有符合条件的点,注明点C的位置.(保留作图痕迹,不写作法)

解:作图略

20.(8分)将一张长方形纸条ABCD按如图所示折叠,若折叠角∠FEC=°.

(1)求∠1的度数;

(2)求证:△EFG是等腰三角形.

解:(1)∠1=52° (2)∵AD∥BC,∴∠GFE=∠FEC.∴∠GEF=∠GFE.∴GE=GF.∴△EFG是等腰三角形

21.(8分)如图,点C,E,F,B在同一直线上,点A,D在BC异侧,AB∥CD,AE=DF,∠A=∠D.

(1)求证:AB=CD;

(2)若AB=CF,∠B=30°,求∠D的度数.

解:(1)易证△ABE≌△DCF(AAS),∴AB=CD (2)∵△ABE≌△DCF,∴AB=CD,BE=CF,∵AB=CF,∠B=30°,∴CF=CD,∴∠CFD=∠D,∴∠D=×(180°-30°)=75°

22.(8分)如图,在△ABC中,∠ACB=90°,∠BAC=30°,将线段AC绕点A顺时针旋转60°得到线段AD,连接CD交AB于点O,连接BD.

(1)求证:AB垂直平分CD;

(2)若AB=6,求BD的长.

解:(1)∵线段AC绕点A顺时针旋转60°得到线段AD,∴AD=AC,∠CAD=60°,∴△ACD是等边三角形.∵∠BAC=30°,∴∠DAB=30°,∴∠BAC=∠DAB,∴AO⊥CD,CO=DO,∴AB垂直平分CD (2)由(1)可知∠DAB=30°,BC=BD,又∵∠ACB=90°,∴BC=BD=AB=×6=3

23.(8分)如图,BD是∠ABC的平分线,AB=BC,点E在BD上,连接AE,CE,DF⊥AE,DG⊥CE,垂足分别是F,G.

(1)求证:△ABE≌△CBE;

(2)求证:DF=DG.

解:(1)易证△ABE≌△CBE(SAS) (2)由(1)得∠AEB=∠CEB,∴∠AED=∠CED,又∵DF⊥AE,DG⊥CE,∴DF=DG

24.(8分)已知△ABC是等边三角形,点D是直线BC上一点,以AD为一边在AD的右侧作等边△ADE.

(1)如图①,点D在线段BC上移动时,直接写出∠BAD和∠CAE的大小关系;

(2)如图②,点D在线段BC的延长线上移动时,猜想∠DCE的大小是否发生变化.若不变请求出其大小;若变化,请说明理由.

解:(1)∠BAD=∠CAE

(2)∠DCE=60°,不发生变化 .理由如下:∵△ABC是等边三角形,△ADE是等边三角形,∴∠DAE=∠BAC=∠ABC=∠ACB=60°,AB=AC,AD=AE,∴∠ACD=120°,∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE.易证△ABD≌△ACE(SAS),∴∠ACE=∠B=60°,∴∠DCE=∠ACD-∠ACE=120°-60°=60°

25.(10分)(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D,E.求证:DE=BD+CE;

(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D,A,E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由;

(3)拓展与应用:如图(3),D,E是D,A,E三点所在直线m上的两动点(D,A,E三点互不重合),且△ABF和△ACF均为等边三角形,连接BD,CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状,并说明理由.

解:(1)∵∠BAC=90°,∴∠BAD+∠CAE=90°,又∵BD⊥m,CE⊥m,∴∠BDA=90°,∠CEA=90°,∴∠BAD+∠DBA=90°,∴∠CAE=∠DBA,∠BDA=∠CEA,又∵AB=AC,∴△BDA≌△AEC(AAS),∴BD=AE,AD=EC,∴DE=AD+AE=EC+BD,即DE=BD+CE (2)成立.∵∠BDA=∠BAC,∠BDA+∠DBA=∠BAC+∠CAE,∴∠DBA=∠CAE,又∵∠BDA=∠AEC,AB=AC,∴△BDA≌△AEC(AAS),∴BD=AE,AD=EC,∴DE=AD+AE=BD+CE

(3)△DEF是等边三角形,由(1)(2)可证得△BDA≌△AEC,∴∠BAD=∠ACE,AD=EC,又∵△ABF和△ACF是等边三角形,∴FC=FA,∠FCA=∠FAB=60°,∴∠BAD+∠FAB=∠ACE+∠FCA,∴∠DAF=∠ECF,∴△FAD≌△FCE(SAS),∴FD=FE,∠DFA=∠EFC,又∵∠EFC+∠AFE=60°,∴∠DFA+∠AFE=60°,∴∠DFE=60°,∴△DEF是等边三角形

文档

人教版数学八年级上册期中考试试卷

人教版数学八年级上册期中考试试题(时间:120分钟满分:120分)一、选择题(每小题3分,共30分)1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是(A)2.与点P(2,-5)关于x轴对称的点是(D)A.(-2,-5)B.(2,-5)C.(-2,5)D.(2,5)3.如图,∠1=100°,∠2=145°,那么∠3=(B)A.55°B.65°C.75°D.85°,第3题图),第4题图),第6题图),第7题图)4.如图,将直角三角尺的直角顶点靠在直尺上,且斜边与这根直尺平行,那么在
推荐度:
  • 热门焦点

最新推荐

猜你喜欢

热门推荐

专题
Top