一、实验题目
TSP问题的遗传算法实现
二 、实验目的
1 熟悉和掌握遗传算法的基本概念和基本思想;
2 加深对遗传算法的理解,理解和掌握遗传算法的各个操作算子;
3 理解和掌握利用遗传算法进行问题求解的基本技能。
三 、实验要求
1 以10/个城市结点的TSP问题为例,用遗传算法加以求解;
2 掌握遗传算法的基本原理、各个遗传操作和算法步骤;
3能求出问题最优解,若得不出最优解,请分析原因;
4要求界面显示每次迭代求出的局部最优解和最终求出的全局最优解。
四 、实验代码
Main函数
%% 连续Hopfield神经网络的优化—旅行商问题优化计算
% function main
%% 清空环境变量、定义全局变量
clear all
clc
global A D
%% 导入城市位置
load city_location
%% 计算相互城市间距离
distance=dist(citys,citys');
%% 初始化网络
N=size(citys,1);
A=200;
D=100;
U0=0.1;
step=0.0001;
delta=2*rand(N,N)-1;
U=U0*log(N-1)+delta;
V=(1+tansig(U/U0))/2;
iter_num=10000;
E=zeros(1,iter_num);
%% 寻优迭代
for k=1:iter_num
% 动态方程计算
dU=diff_u(V,distance);
% 输入神经元状态更新
U=U+dU*step;
% 输出神经元状态更新
V=(1+tansig(U/U0))/2;
% 能量函数计算
e=energy(V,distance);
E(k)=e;
end
%% 判断路径有效性
[rows,cols]=size(V);
V1=zeros(rows,cols);
[V_max,V_ind]=max(V);
for j=1:cols
V1(V_ind(j),j)=1;
end
C=sum(V1,1);
R=sum(V1,2);
flag=isequal(C,ones(1,N)) & isequal(R',ones(1,N));
%% 结果显示
if flag==1
% 计算初始路径长度
sort_rand=randperm(N);
citys_rand=citys(sort_rand,:);
Length_init=dist(citys_rand(1,:),citys_rand(end,:)');
for i=2:size(citys_rand,1)
Length_init=Length_init+dist(citys_rand(i-1,:),citys_rand(i,:)');
end
% 绘制初始路径
figure(1)
plot([citys_rand(:,1);citys_rand(1,1)],[citys_rand(:,2);citys_rand(1,2)],'o-')
for i=1:length(citys)
text(citys(i,1),citys(i,2),[' ' num2str(i)])
end
text(citys_rand(1,1),citys_rand(1,2),[' 起点' ])
text(citys_rand(end,1),citys_rand(end,2),[' 终点' ])
title(['优化前路径(长度:' num2str(Length_init) ')'])
axis([0 1 0 1])
grid on
xlabel('城市位置横坐标')
ylabel('城市位置纵坐标')
% 计算最优路径长度
[V1_max,V1_ind]=max(V1);
citys_end=citys(V1_ind,:);
Length_end=dist(citys_end(1,:),citys_end(end,:)');
for i=2:size(citys_end,1)
Length_end=Length_end+dist(citys_end(i-1,:),citys_end(i,:)');
end
disp('最优路径矩阵');V1
% 绘制最优路径
figure(2)
plot([citys_end(:,1);citys_end(1,1)],...
[citys_end(:,2);citys_end(1,2)],'o-')
for i=1:length(citys)
text(citys(i,1),citys(i,2),[' ' num2str(i)])
end
text(citys_end(1,1),citys_end(1,2),[' 起点' ])
text(citys_end(end,1),citys_end(end,2),[' 终点' ])
title(['优化后路径(长度:' num2str(Length_end) ')'])
axis([0 1 0 1])
grid on
xlabel('城市位置横坐标')
ylabel('城市位置纵坐标')
% 绘制能量函数变化曲线
figure(3)
plot(1:iter_num,E);
ylim([0 2000])
title(['能量函数变化曲线(最优能量:' num2str(E(end)) ')']);
xlabel('迭代次数');
ylabel('能量函数');
else
disp('寻优路径无效');
end
% %===========================================
% function du=diff_u(V,d)
% global A D
% n=size(V,1);
% sum_x=repmat(sum(V,2)-1,1,n);
% sum_i=repmat(sum(V,1)-1,n,1);
% V_temp=V(:,2:n);
% V_temp=[V_temp V(:,1)];
% sum_d=d*V_temp;
% du=-A*sum_x-A*sum_i-D*sum_d;
% %==========================================
% function E=energy(V,d)
% global A D
% n=size(V,1);
% sum_x=sumsqr(sum(V,2)-1);
% sum_i=sumsqr(sum(V,1)-1);
% V_temp=V(:,2:n);
% V_temp=[V_temp V(:,1)];
% sum_d=d*V_temp;
% sum_d=sum(sum(V.*sum_d));
% E=0.5*(A*sum_x+A*sum_i+D*sum_d);
diff_u函数
% % % % 计算du
function du=diff_u(V,d)
global A D
n=size(V,1);
sum_x=repmat(sum(V,2)-1,1,n);
sum_i=repmat(sum(V,1)-1,n,1);
V_temp=V(:,2:n);
V_temp=[V_temp V(:,1)];
sum_d=d*V_temp;
du=-A*sum_x-A*sum_i-D*sum_d;
Energy函数
% % % % % 计算能量函数
function E=energy(V,d)
global A D
n=size(V,1);
sum_x=sumsqr(sum(V,2)-1);
sum_i=sumsqr(sum(V,1)-1);
V_temp=V(:,2:n);
V_temp=[V_temp V(:,1)];
sum_d=d*V_temp;
sum_d=sum(sum(V.*sum_d));
E=0.5*(A*sum_x+A*sum_i+D*sum_d);
五 、实验结果
(图一、最优路径矩阵)
(图二、优化前路线)
(图三、优化后路线)
(图三、能量函数)