最新文章专题视频专题问答1问答10问答100问答1000问答2000关键字专题1关键字专题50关键字专题500关键字专题1500TAG最新视频文章推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37视频文章20视频文章30视频文章40视频文章50视频文章60 视频文章70视频文章80视频文章90视频文章100视频文章120视频文章140 视频2关键字专题关键字专题tag2tag3文章专题文章专题2文章索引1文章索引2文章索引3文章索引4文章索引5123456789101112131415文章专题3
当前位置: 首页 - 正文

实验六、图像的边缘检测

来源:动视网 责编:小OO 时间:2025-09-29 23:18:39
文档

实验六、图像的边缘检测

实验六、图像的边缘检测一、实验目的1、了解图像边缘提取的基本概念;2、了解进行边缘提取的基本方法;3、掌握用MATLAB语言进行图像边缘提取的方法。二、实验原理图像理解是图像处理的一个重要分支,他研究为完成某一任务需要从图像中提取哪些有用的信息,以及如何利用这些信息解释图像。边缘检测技术对于处理数字图像非常重要,因为边缘是所要提取目标和背景的分界线,提取出边缘才能将目标和背景区分开来。在图像中,边界表明一个特征区域的终结和另一个特征区域的开始,边界所分开区域的内部特征或属性是一致的,而不同的区
推荐度:
导读实验六、图像的边缘检测一、实验目的1、了解图像边缘提取的基本概念;2、了解进行边缘提取的基本方法;3、掌握用MATLAB语言进行图像边缘提取的方法。二、实验原理图像理解是图像处理的一个重要分支,他研究为完成某一任务需要从图像中提取哪些有用的信息,以及如何利用这些信息解释图像。边缘检测技术对于处理数字图像非常重要,因为边缘是所要提取目标和背景的分界线,提取出边缘才能将目标和背景区分开来。在图像中,边界表明一个特征区域的终结和另一个特征区域的开始,边界所分开区域的内部特征或属性是一致的,而不同的区
实验六、图像的边缘检测

一、实验目的

1、了解图像边缘提取的基本概念;

2、了解进行边缘提取的基本方法;

3、掌握用MATLAB语言进行图像边缘提取的方法。

二、实验原理

图像理解是图像处理的一个重要分支,他研究为完成某一任务需要从图像中提取哪些有用的信息,以及如何利用这些信息解释图像。边缘检测技术对于处理数字图像非常重要,因为边缘是所要提取目标和背景的分界线,提取出边缘才能将目标和背景区分开来。在图像中,边界表明一个特征区域的终结和另一个特征区域的开始,边界所分开区域的内部特征或属性是一致的,而不同的区域内部的特征或属性是不同的,边缘检测正是利用物体和背景在某种图像特性上的差异来实现的,这些差异包括灰度,颜色或者纹理特征。边缘检测实际上就是检测图像特征发生变化的位置。

由于噪声和模糊的存在,检测到的边界可能会变宽或在某些点处发生间断,因此,边界检测包括两个基本内容:首先抽取出反映灰度变化的边缘点,然后剔除某些边界点或填补边界间断点,并将这些边缘连接成完整的线。边缘检测的方法大多数是基于方向导数掩模求卷积的方法。

导数算子具有突出灰度变化的作用,对图像运用导数算子,灰度变化较大的点处算得的值比较高,因此可将这些导数值作为相应点的边界强度,通过设置门限的方法,提取边界点集。

一阶导数与是最简单的导数算子,它们分别求出了灰度在x和y方向上的变化率,而方向α上的灰度变化率可以用下面式子计算:

对于数字图像,应该采用差分运算代替求导,相对应的一阶差分为:

    

方向差分为:

    

函数f在某点的方向导数取得最大值的方向是,方向导数的最大值是称为梯度模。利用梯度模算子来检测边缘是一种很好的方法,它不仅具有位移不变性,还具有各向同性。为了运算简便,实际中采用梯度模的近似形式,如:、及等。另外,还有一些常用的算子,如Roberts算子和Sobel算子。

Roberts算子的表达式为:

    

Sobel算子的表达式为:

X方向算子:         y方向算子: 

其中,由于Sobel算子是滤波算子的形式,用于提取边缘。我们可以利用快速卷积函数,简单有效,因此应用很广泛。

拉普拉斯高斯(loG)算法是一种二阶边缘检测方法。它通过寻找图像灰度值中二阶微分中的过零点(Zero Crossing)来检测边缘点。其原理为,灰度级变形成的边缘经过微风算子形成一个单峰函数,峰值位置对应边缘点;对单峰函数进行微分,则峰值处的微分值为0,峰值两侧符号相反,而原先的极值点对英语二阶微分中的过零点,通过检测过零点即可将图像的边缘提取出来。

MATLAB的图像处理工具箱中提供的edge函数可以实现检测边缘的功能,其语法格式如下:

BW = edge(I,'sobel')

BW = edge(I,'sobel',direction)

BW = edge(I,'roberts')

BW = edge(I,'log')

这里BW = edge(I,'sobel')采用Sobel算子进行边缘检测。BW = edge(I,'sobel',direction)可以指定算子方向,即:

direction=’horizontal’,为水平方向;

direction=’vertical’,为垂直方向;

direction=’both’,为水平和垂直两个方向。

BW = edge(I,'roberts')和BW = edge(I,'log')分别为用Roberts算子和拉普拉斯高斯算子进行边缘检测。

例:用三种算子进行边缘检测。

I=imread('eight.tif');

imshow(I)

BW1=edge(I,'roberts');

figure ,imshow(BW1),title('用Roberts算子')

BW2=edge(I,'sobel');

figure,imshow(BW2),title('用Sobel算子 ')

BW3=edge(I,'log');

figure,imshow(BW3),title('用拉普拉斯高斯算子')

三、实验要求

1、读出MATLAB图像处理工具箱中提供的rice.tif这幅图像,并显示。

2、分别用Roberts,Sobel和拉普拉斯高斯算子对图像进行边缘检测。比较三种算子处理的不同之处。

文档

实验六、图像的边缘检测

实验六、图像的边缘检测一、实验目的1、了解图像边缘提取的基本概念;2、了解进行边缘提取的基本方法;3、掌握用MATLAB语言进行图像边缘提取的方法。二、实验原理图像理解是图像处理的一个重要分支,他研究为完成某一任务需要从图像中提取哪些有用的信息,以及如何利用这些信息解释图像。边缘检测技术对于处理数字图像非常重要,因为边缘是所要提取目标和背景的分界线,提取出边缘才能将目标和背景区分开来。在图像中,边界表明一个特征区域的终结和另一个特征区域的开始,边界所分开区域的内部特征或属性是一致的,而不同的区
推荐度:
  • 热门焦点

最新推荐

猜你喜欢

热门推荐

专题
Top