
1.在下列各图的△ABC中,正确画出AC边上的高的图形是( )
A.B. C.D.
2.如图中三角形的个数是( )
A.6 B.7 C.8 D.9
3.如图,△ABC的角平分线AD、中线BE相交于点O,则①AO是△ABE的角平分线;②BO是△ABD的中线;③DE是△ADC的中线;④ED是△EBC的角平分线的结论中正确的有( )
A.1个 B.2个 C.3个 D.4个
4.如果三角形的两边长分别为7和9.那么第三边的长可能是下列数据中的( )
A.2 B.13 C.16 D.18
5.如图,在△ABC中,∠B=32°,将△ABC沿直线m翻折,点B落在点D的位置,则∠1﹣∠2的度数是( )
A.32° B.45° C.60° D.°
6.如图,△ABC中,∠A=20°,沿BE将此三角形对折,又沿BA′再一次对折,点C落在BE上的C′处,此时∠C′DB=74°,则原三角形的∠C的度数为( )
A.27° B.59° C.69° D.79°
7.如图,AE是△ABC的角平分线,AD⊥BC于点D,若∠BAC=76°,∠C=°,则∠DAE的度数是( )
A.10° B.12° C.15° D.18°
8.如图,在△ABC中,∠ACB=90°,过点C作CD∥AB交∠ABC的平分线于点D,若∠ABD=20°,则∠ACD的度数为( )
A.20° B.30° C.40° D.50°
9.如图,△ABC中,∠BAC=90°,AD⊥BC,∠ABC的平分线BE交AD于点F,AG平分∠DAC.给出下列结论:①∠BAD=∠C; ②∠AEF=∠AFE; ③∠EBC=∠C;④AG⊥EF.正确结论有( )
A.1个 B.2个 C.3个 D.4个
10.将若干个大小相等的正五边形排成环状,如图所示是前3个五边形,要完成这一圆环还需_______个正五边形( )
A.6 B.7 C.8 D.9
11.如图,△ABC中,∠ABC、∠ACB的三等分线交于点E、D,若∠E=90°,则∠BDC的度数为( )
A.120° B.125° C.130° D.135°
12.一副三角板如图放置,则∠1+∠2的度数为( )
A.22.5° B.30° C.45° D.60°
13.如图,△ABC的角平分线CD、BE相交于F,∠A=90°,EG∥BC,且CG⊥EG于G,下列结论:①∠CEG=2∠DCB;②∠ADC=∠GCD;③CA平分∠BCG;④∠DFB=∠CGE.其中正确的结论的个数是( )
A.1 B.2 C.3 D.4
14.若多边形的边数由n增加到n+1(n为大于3的正整数),则其内角和的度数( )
A.增加180° B.减少180° C.不变 D.不能确定
15.小明把一副含45°,30°的直角三角板如图摆放,其中∠C=∠F=90°,∠A=45°,∠D=30°,则∠α+∠β等于( )
A.280° B.285° C.290° D.295°
16.若一个三角形三条高的交点在这个三角形的顶点上,则这个三角形是 三角形.
17.木工师傅在做完门框后为防止变形,常如图所示那样钉上两条斜拉的木板条,这样做的数学依据是 .
18.如图,把一张三角形纸片(△ABC)进行折叠,使点A落在BC上的点F处,折痕为DE,点D,点E分别在AB和AC上,DE∥BC,若∠B=75°,则∠BDF的度数为 .
19.一个多边形的一个外角为α,且该多边形的内角和与α的和等于840°,则这个多边形的边数为 ,α= 度.
20.如图,在△ABC中,∠A、∠B的平分线相交于点I,若∠C=70°,则∠AIB= 度,若∠AIB=155°,则∠C= 度.
21.如图,在△ABC中,∠B=∠C,∠BAD=40°,且∠ADE=∠AED,求∠CDE的度数.
22.如图,在Rt△ABE中,∠AEB=90°,C为AE延长线上的一点,D为AB边上的一点,DC交BE于F,若∠ADC=80°,∠B=30°,求∠C的度数.
23.如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠CAB=50°,∠C=60°,求∠DAE和∠BOA的度数.
24.已知:如图,△ABC中,∠BAD=∠EBC,AD交BE于F.
(1)试说明:∠ABC=∠BFD;
(2)若∠ABC=35°,EG∥AD,EH⊥BE,求∠HEG的度数.
25.如图①,在△ABC中,∠ABC与∠ACB的平分线相交于点P.
(1)如果∠A=80°,求∠BPC的度数;
(2)如图②,作△ABC外角∠MBC,∠NCB的角平分线交于点Q,试探索∠Q、∠A之间的数量关系.
(3)如图③,延长线段BP、QC交于点E,△BQE中,存在一个内角等于另一个内角的2倍,求∠A的度数.
参
1.解:AC边上的高就是过B作垂线垂直AC交AC的延长线于D点,因此只有C符合条件,故选:C.
2.解:∵图中三角形有:△ECA,△EBD,△FBA,△FCD,△AFD,△ABD,△ACD,△AED,∴共8个.故选:C.
3.解:∵△ABC的角平分线AD、中线BE相交于点O,
∴∠BAD=∠CAD,AE=CE,
①在△ABE中,∠BAD=∠CAD,∴AO是△ABE的角平分线,故①正确;
②AO≠OD,所以BO不是△ABD的中线,故②错误;
③在△ADC中,AE=CE,DE是△ADC的中线,故③正确;
④∠ADE不一定等于∠EDC,那么ED不一定是△EBC的角平分线,故④错误;
正确的有2个选项.故选:B.
4.解:∵三角形的两边长分别为7和9,
∴9﹣7<第三边的长<9+7,即2<第三边的长<16,
选项中只有,13符合题意.故选:B.
5.解:如图所示:
由折叠的性质得:∠D=∠B=32°,
根据外角性质得:∠1=∠3+∠B,∠3=∠2+∠D,
∴∠1=∠2+∠D+∠B=∠2+2∠B=∠2+°,
∴∠1﹣∠2=°.故选:D.
6.解如图,∵△ABC沿BE将此三角形对折,又沿BA′再一次对折,点C落在BE上的C′处,
∴∠1=∠2,∠2=∠3,∠CDB=∠C′DB=74°,
∴∠1=∠2=∠3,
∴∠ABC=3∠3,
在△BCD中,∠3+∠C+∠CDB=180°,
∴∠3+∠C=180°﹣74°=106°,
在△ABC中,
∵∠A+∠ABC+∠C=180°,
∴20°+2∠3+(∠3+∠C)=180°,
即20°+2∠3+106°=180°,
∴∠3=27°,
∴∠ABC=3∠3=81°,
∠C=106°﹣27°=79°,
故选:D.
7.解:∵AE平分∠BAC,
∴∠CAE=∠CAB=×76°=38°,
∵AD⊥BC,
∴∠ADC=90°,
∴∠CAD=90°﹣∠C=90°﹣°=26°,
∴∠DAE=∠EAC﹣∠CAD=38°﹣26°=12°,
故选:B.
8.解:∵BD平分∠ABC,
∴∠ABD=∠DBC=20°,
∴∠ABC=40°,
∵∠ACB=90°,
∴∠A=90°﹣∠ABC=90°﹣40°=50°,
∵CD∥AB,
∴∠ACD=∠A=50°,
故选:D.
9.解:∵∠BAC=90°,AD⊥BC,
∴∠C+∠ABC=90°,
∠BAD+∠ABC=90°,
∴∠BAD=∠C,故①正确;
∵BE是∠ABC的平分线,
∴∠ABE=∠CBE,
∵∠ABE+∠AEF=90°,
∠CBE+∠BFD=90°,
∴∠AEF=∠BFD,
又∵∠AFE=∠BFD(对顶角相等),
∴∠AEF=∠AFE,故②正确;
∵∠ABE=∠CBE,
∴只有∠C=30°时∠EBC=∠C,故③错误;
∵∠AEF=∠AFE,
∴AE=AF,
∵AG平分∠DAC,
∴AG⊥EF,故④正确.
综上所述,正确的结论是①②④.
故选:C.
10.解:五边形的内角和为(5﹣2)•180°=540°,
所以正五边形的每一个内角为540°÷5=108°,
如图,延长正五边形的两边相交于点O,则∠1=360°﹣108°×3=360°﹣324°=36°,
360°÷36°=10,
∵已经有3个五边形,
∴10﹣3=7,
即完成这一圆环还需7个五边形.
故选:B.
11.解:在△BEC中,
∵∠BEC=90°,
∴∠EBC+∠ECB=90°,
∵∠ABC、∠ACB的三等分线交于点E、D,
∴∠DBC=∠EBC,∠DCB=∠ECB,
∴∠DBC+∠DCB=×90°=45°,
∴∠BDC=180°﹣(∠DBC+∠DCB)=135°,
故选:D.
12.解:标上字母如图,连接BA并延长到C,
∵∠DAC是△ABD的外角,∠EAC是△ABE的外角,
∴∠DAC=∠1+∠ABD,∠EAC=∠2+∠ABE,
∴∠DAE=∠1+∠2+∠DBE,
∴∠1+∠2=90°﹣60°=30°.
故选:B.
13.解:∵EG∥BC,
∴∠CEG=∠ACB,
∵CD平分∠ACB,
∴∠ACB=2∠DCB,
∴∠CEG=2∠DCB,故①正确;
∵∠A=90°,
∴∠ACD+∠ADC=90°,
∵EG∥BC,且CG⊥EG于G,
∴∠CGE=∠GCB=90°,
∴∠GCD+∠BCD=90°,
∵CD平分∠ACB,
∴∠ACD=∠BCD,
∴∠ADC=∠GCD,故②正确;
无法证明CA平分∠BCG,故③错误;
∵∠EBC+∠ACB=∠AEB,∠DCB+∠ABC=∠ADC,
∴∠AEB+∠ADC=90°+(∠ABC+∠ACB)=135°,
∴∠DFE=360°﹣135°﹣90°=135°,
∴∠DFB=45°=∠CGE,故④正确;
所以其中正确的结论为①②④共3个,
故选:C.
14.解:n边形的内角和是(n﹣2)•180°,n+1边形的内角和是(n+1﹣2)•180°=(n﹣1)•180°,则(n﹣1)•180°﹣(n﹣2)•180°=180°,
故选:A.
15.解:
∵∠C=∠F=90°,∠A=45°,∠D=30°,
∴∠2+∠3=180°﹣∠D=150°,
∵∠α=∠1+∠A,∠β=∠4+∠C,
∵∠1=∠2,∠3=∠4,
∴∠α+∠β=∠A+∠1+∠4+∠C=∠A+∠C+∠2+∠3=45°+90°+150°=285°,
故选:B.
16.解:若一个三角形三条高的交点在这个三角形的顶点上,则这个三角形是直角三角形.
故答案为直角.
17.解:木工师傅在做完门框后为防止变形,常如图所示那样钉上两条斜拉的木板条,这样做的数学依据是三角形具有稳定性,
故答案为:三角形具有稳定性.
18.解:∵DE∥BC,
∴∠ADE=∠B=75°,
又∵∠ADE=∠EDF=75°,
∴∠BDF=180°﹣75°﹣75°=30°,
故答案为30°.
19.解:∵840÷180=4…120,
∴这个多边形的边数为:4+2=6,
α=120°,
故答案为:六;120.
20.解:连接CI并延长交AB于P.
∵AI平分∠CAP,
∴∠1=∠2.
∵BI平分∠CBP,
∴∠3=∠4,
∴∠1+∠3=(∠CAB+∠CBA)=×(180°﹣70°)=55°,
∴∠7+∠8=∠1+∠3+∠5+∠6=55°+70°=125°.
∵∠AIB=155°,
∴∠2+∠4=180°﹣155°=25°,
又∵∠CAP、∠CBP的平分线,相交于点I,
∴∠CAP+∠CBP=2×25°=50°,
∴∠ACB=180°﹣50°=130°.
21.解:∵∠CDE+∠C=∠AED,∠ADE=∠AED,
∴∠C+∠CDE=∠ADE.
又∵∠B+∠BAD=∠ADC,
∴∠B+40°=∠C+∠CDE+∠CDE.
∵∠B=∠C,
∴2∠CDE=40°,
∴∠CDE=20°.
22.解:∵在Rt△ABE中,∠AEB=90°,∠B=30°
∴∠A=90°﹣∠B=60°,
∵在△ADC中,∠A=60°,∠ADC=80°
∴∠C=180°﹣60°﹣80°=40°,
答:∠C的度数为40°.
23.解:∵∠CAB=50°,∠C=60°
∴∠ABC=180°﹣50°﹣60°=70°,
又∵AD是高,
∴∠ADC=90°,
∴∠DAC=180°﹣90°﹣∠C=30°,
∵AE、BF是角平分线,
∴∠CBF=∠ABF=35°,∠EAF=25°,
∴∠DAE=∠DAC﹣∠EAF=5°,
∠AFB=∠C+∠CBF=60°+35°=95°,
∴∠BOA=∠EAF+∠AFB=25°+95°=120°,
∴∠DAC=30°,∠BOA=120°.
故∠DAE=5°,∠BOA=120°.
24.解:(1)∵∠BFD=∠ABF+∠BAD,∠ABC=∠ABF+∠FBC,
∵∠BAD=∠EBC,
∴∠ABC=∠BFD;
(2)∵∠BFD=∠ABC=35°,
∵EG∥AD,
∴∠BEG=∠BFD=35°,
∵EH⊥BE,
∴∠BEH=90°,
∴∠HEG=∠BEH﹣∠BEG=55°.
25.(1)解:∵∠A=80°.
∴∠ABC+∠ACB=100°,
∵点P是∠ABC和∠ACB的平分线的交点,
∴∠P=180°﹣(∠ABC+∠ACB)=180°﹣×100°=130°,
(2)∵外角∠MBC,∠NCB的角平分线交于点Q,
∴∠QBC+∠QCB=(∠MBC+∠NCB)
=(360°﹣∠ABC﹣∠ACB)=(180°+∠A)=90°+∠A
∴∠Q=180°﹣(90°+∠A)=90°﹣∠A;
(3)延长BC至F,
∵CQ为△ABC的外角∠NCB的角平分线,
∴CE是△ABC的外角∠ACF的平分线,
∴∠ACF=2∠ECF,
∵BE平分∠ABC,
∴∠ABC=2∠EBC,
∵∠ECF=∠EBC+∠E,
∴2∠ECF=2∠EBC+2∠E,
即∠ACF=∠ABC+2∠E,
又∵∠ACF=∠ABC+∠A,
∴∠A=2∠E,即∠E=∠A;
∵∠EBQ=∠EBC+∠CBQ
=∠ABC+∠MBC
=(∠ABC+∠A+∠ACB)=90°.
如果△BQE中,存在一个内角等于另一个内角的2倍,那么分四种情况:
①∠EBQ=2∠E=90°,则∠E=45°,∠A=2∠E=90°;
②∠EBQ=2∠Q=90°,则∠Q=45°,∠E=45°,∠A=2∠E=90°;
③∠Q=2∠E,则90°﹣∠A=∠A,解得∠A=60°;
④∠E=2∠Q,则∠A=2(90°﹣∠A),解得∠A=120°.
综上所述,∠A的度数是90°或60°或120°.
