知识要点:
1. 两条直线的位置关系
(1)在同一平面内,两条直线的位置关系有两种:相交与平行.
(2)平行线:在同一平面内,不相交的两条直线叫平行线.
2. 几种特殊关系的角
(1)余角和补角:如果两个角的和是直角,称这两个角互为余角.如果两个角的和是平角,称这两个角互为补角.
(2)对顶角:
①定义:一个角的两边分别是另一个角两边的反向延长线,这两个角叫对顶角.
②性质:对顶角相等.
(3)同位角、内错角、同旁内角
两条直线分别与第三条直线相交,构成八个角.
①在两条直线之间并且在第三条直线的两旁的两个角叫做内错角.
②在两条直线的同一侧并且在第三条直线同旁的两个角叫做同位角.
③在两条直线之间并且在第三条直线同旁的两个角叫做同旁内角.
3. 主要的结论
(1)垂线
①过一点有且只有一条直线与已知直线垂直.
②直线外一点与直线上各点连结的所有线段中,垂线段最短.简称:垂线段最短.
(2)平行线的特征及判定
平行线的判定 | 平行线的特征 |
同位角相等,两直线平行 内错角相等,两直线平行 同旁内角互补,两直线平行 | 两直线平行,同位角相等 两直线平行,内错角相等 两直线平行,同旁内角互补 经过直线外一点,有且只有一条直线与已知直线平行 |
(1)垂线段:过直线外一点,作已知直线的垂线,这点和垂足之间的线段.
(2)点到直线的距离:从直线外一点到这条直线的垂线段的长度.
5. 几个基本图形
(1)相交线型.①一般型(如图①);②特殊型(垂直,如图②).
(2)三线八角.①一般型(如图①);②特殊型(平行,如图②).
重点难点:
重点有两个:一方面要掌握关于相交线和平行线的一些基本事实,另一方面学会借助三角尺上的直角或量角器画已知直线的垂线,用移动三角尺的方法画平行线.难点是是利用对顶角的性质、平行线的特征、两直线平行的条件等进行推理和计算.
考点分析:
考查(1)对顶角的性质;(2)平行线的识别方法;(3)平行线的特征,其中依据平行线的识别与特征解决一类与平行线有关的几何问题是历届中考命题的重要考点.常见题型有填空题、选择题和解答题,单纯考查一个知识点的题目并不难,属于中低档题,将平行线的特征与其他知识综合起来考查的题目难度较大,属高档题.
【典型例题】
1. 如图所示,已知FC∥AB∥DE,∠α∶∠D∶∠B=2∶3∶4,求∠α、∠D、∠B的度数.
2. 如图所示,直线a∥b,则∠A=__________.
3.如图1,直线MN与直线AB、CD分别交于点E、F,∠1与∠2互补.
(1)试判断直线AB与直线CD的位置关系,并说明理由;
(2)如图2,∠BEF与∠EFD的角平分线交于点P,EP与CD交于点G,点H是MN上一点,且GH⊥EG,求证:PF∥GH;
(3)如图3,在(2)的条件下,连接PH,K是GH上一点使∠PHK=∠HPK,作PQ平分∠EPK,问∠HPQ的大小是否发生变化?若不变,请求出其值;若变化,说明理由.
4.已知,BC∥OA,∠B=∠A=100°,试回答下列问题:
(1)如图①,求证:OB∥AC.
(2)如图②,若点E、F在线段BC上,且满足∠FOC=∠AOC,并且OE平分∠BOF.则∠EOC的度数等于 ;(在横线上填上答案即可).
(3)在(2)的条件下,若平行移动AC,如图③,那么∠OCB:∠OFB的值是否随之发生变化?若变化,试说明理由;若不变,求出这个比值.
(4)在(3)的条件下,如果平行移动AC的过程中,若使∠OEB=∠OCA,此时∠OCA度数等于 .(在横线上填上答案即可).
5.如图,已知两条射线OM∥CN,动线段AB的两个端点A、B分别在射线OM、CN上,且∠C=∠OAB=108°,F在线段CB上,OB平分∠AOF,OE平分∠COF.
(1)请在图中找出与∠AOC相等的角,并说明理由;
(2)若平行移动AB,那么∠OBC与∠OFC的度数比是否随着AB位置的变化而发生变化?若变化,找出变化规律;若不变,求出这个比值;
(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=2∠OBA?若存在,请求出∠OBA度数;若不存在,说明理由.
6.已知E,F分别是AB、CD上的动点,P也为一动点.
(1)如图1,若AB∥CD,求证:∠P=∠BEP+∠PFD;
(2)如图2,若∠P=∠PFD﹣∠BEP,求证:AB∥CD;
(3)如图3,AB∥CD,移动E,F使得∠EPF=90°,作∠PEG=∠BEP,求的值.
7.已知:∠A=(90+x)°,∠B=(90﹣x)°,∠CED=90°,射线EF∥AC,2∠C﹣∠D=m.
(1)判断AC与BD的位置关系,并说明理由.
(2)如图1,当m=30°时,求∠C、∠D的度数.
(3)如图2,求∠C、∠D的度数(用含m的代数式表示).
8.(1)如图(1),EF⊥GF,垂足为F,∠AEF=150°,∠DGF=60°. 试判断AB和CD的位置关系,并说明理由.
(2)如图(2),AB∥DE,∠ABC=70°,∠CDE=147°,∠C= .(直接给出答案)
(3)如图(3),CD∥BE,则∠2+∠3﹣∠1= .(直接给出答案)
(4)如图(4),AB∥CD,∠ABE=∠DCF,求证:BE∥CF.
9.如图1,点E在直线BH、DC之间,点A为BH上一点,且AE⊥CE,∠DCE﹣∠HAE=90°.
(1)求证:BH∥CD.
(2)如图2:直线AF交DC于F,AM平分∠EAF,AN平分∠BAE.试探究∠MAN,∠AFG的数量关系.
10.平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的锐角相等,如图,一束光线m先射到平面镜a上,被平面镜a反射到平面镜b上,又被平面镜b反射出光线n.
(1)若m∥n,且∠1=50°,则∠2= °,∠3= °;
(2)若m∥n,且∠1=40°,则∠3= °;
(3)根据(1)、(2)猜想:当两平面镜a、b的夹角∠3是多少度时,总有m∥n?试证明你的猜想.
初一数学相交线和平行线探究题
1.AB∥CD,点C在点D的右侧,∠ABC,∠ADC的平分线交于点E(不与B,D点重合).∠ABC=n°,∠ADC=80°.
(1)若点B在点A的左侧,求∠BED的度数(用含n的代数式表示);
(2)将(1)中的线段BC沿DC方向平移,当点B移动到点A右侧时,请画出图形并判断∠BED的度数是否改变.若改变,请求出∠BED的度数(用含n的代数式表示);若不变,请说明理由.
2.已知:如图①、②,解答下面各题:
(1)图①中,∠AOB=55°,点P在∠AOB内部,过点P作PE⊥OA,PF⊥OB,垂足分别为E、F,求∠EPF的度数。
(2)图②中,点P在∠AOB外部,过点P作PE⊥OA,PF⊥OB,垂足分别为E、F,那么∠P与∠O有什么关系?为什么?
(3)通过上面这两道题,你能说出如果一个角的两边分别垂直于另一个角的两边,则这两个角是什么关系?
(4)如果一个角的两边分别平行于另一个角的两边,则这两个角是什么关系?(请画图说明结果,不需要过程)
3.如图,射线OA∥射线CB,∠C=∠OAB=100°.点D、E在线段CB上,且∠DOB=∠BOA, OE平分∠DOC.
(1)试说明AB∥OC的理由;
(2)试求∠BOE的度数;
(3)平移线段AB;
①试问∠OBC:∠ODC的值是否会发生变化?若不会,请求出这个比值;若会,请找出相应变化规律.
②若在平移过程中存在某种情况使得∠OEC=∠OBA,试求此时∠OEC的度数.
4. (1)①如图1,已知AB∥CD,∠ABC=60°,可得∠BCD=_______°;
②如图2,在①的条件下,如果CM平分∠BCD,则∠BCM=_________°;
③如图3,在①、②的条件下,如果CN⊥CM,则∠BCN=___________°.
(2)、尝试解决下面问题:已知如图4,AB∥CD,∠B=40°,CN是∠BCE的平分线, CN⊥CM,求∠BCM的度数.
5.已知,如图,在△ABC中,∠A=∠ABC,直线EF分别交△ABC的边AB,AC和CB的延长线于点D,E,F.
(1)求证:∠F+∠FEC=2∠A;
(2)过B点作BM∥AC交FD于点M,试探究∠MBC与∠F+∠FEC的数量关系,并证明你的结论.
6.如图,已知直线l1∥l2,直线l3和直线l1、l2交于C、D两点,点P在直线CD上.
(1)试写出图1中∠APB、∠PAC、∠PBD之间的关系,并说明理由;
(2)如果P点在C、D之间运动时,∠APB,∠PAC,∠PBD之间的关系会发生变化吗?
答: .(填发生或不发生);
(3)若点P在C、D两点的外侧运动时(P点与点C、D不重合,如图2、图3),试分别写出∠APB,∠PAC,∠PBD之间的关系,并说明理由.
7.(8分)如图,已知直线l1∥l2,l3、l4和l1、l2分别交于点A、B、C、D,点P在直线l3或l4上且不与点A、B、C、D重合.记∠AEP=∠1,∠PFB=∠2,∠EPF=∠3.
(1)若点P在图(1)位置时,求证:∠3=∠1+∠2;
(2)若点P在图(2)位置时,请直接写出∠1、∠2、∠3之间的关系;
(3)若点P在图(3)位置时,写出∠1、∠2、∠3之间的关系并给予证明;
(4)若点P在C、D两点外侧运动时,请直接写出∠1、∠2、∠3之间的关系.
8.(1)已知:如图1,直线AC∥BD,求证:∠APB=∠PAC+∠PBD;
(2)如图2,如果点P在AC与BD之内,线段AB的左侧,其它条件不变,那么会有什么结果?并加以证明;
(3)如图3,如果点P在AC与BD之外,其他条件不变,你发现的结果是 (只写结果,不要证明).
9.平面内的两条直线有相交和平行两种位置关系
(1)如图a,若AB∥CD,点P在AB、CD外部,则有∠B=∠BOD,又因∠BOD是△POD的外角,故∠BOD=∠BPD+∠D,得∠BPD=∠B-∠D.将点P移到AB、CD内部,如图b,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD、∠B、∠D之间有何数量关系?请证明你的结论;
(2)在图b中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图c,则∠BPD﹑∠B﹑∠D﹑∠BQD之间有何数量关系?(不需证明)
(3)根据(2)的结论求图d中∠A+∠B+∠C+∠D+∠E+∠F的度数.
参
1.(1)∠BED=n°+40°;(2)∠BED的度数改变,∠BED=220°﹣n°.
【解析】
试题分析:(1)如图1,过点E作EF∥AB,根据平行线性质可得∠ABE=∠BEF,∠CDE=∠DEF,再由角平分线定义得出∠ABE=∠ABC=n°,∠CDE=∠ADC=40°,代入∠BED=∠BEF+∠DEF即可求得答案;
(2)如图2,过点E作EF∥AB,根据角平分线定义可得∠ABE=∠ABC=n°,∠CDE=∠ADC=40°,再由平行线性质可得∠BEF=180°﹣∠ABE=180°﹣n°,∠CDE=∠DEF=40°,代入∠BED=∠BEF+∠DEF即可求得答案.
试题解析:解:(1)过点E作EF∥AB,
∵AB∥CD,
∴AB∥CD∥EF,
∴∠ABE=∠BEF,∠CDE=∠DEF,
∵BE平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=80°,
∴∠ABE=∠ABC=n°,∠CDE=∠ADC=40°,
∴∠BED=∠BEF+∠DEF=n°+40°;
(2)∠BED的度数改变,
过点E作EF∥AB,如图,
∵BE平分∠ABC,DE平分∠ADC,∠ABC=n°,∠ADC=80°,
∴∠ABE=∠ABC=n°,∠CDE=∠ADC=40°,
∵AB∥CD,
∴AB∥CD∥EF,
∴∠BEF=180°﹣∠ABE=180°﹣n°,∠CDE=∠DEF=40°,
∴∠BED=∠BEF+∠DEF=180°﹣n°+40°=220°﹣n°.
考点:平行线的判定及性质;角平分线定义.
2.(1)125°;(2)∠P=∠O;(3)相等或互补;(4)相等或互补.
【解析】
试题分析:(1)利用四边形的内角和定理即可求解;
(2)利用垂直的定义和三角形的内角和定理求解;
(3)根据(1)和(2)的结果即可求解;
(4)本题应分两种情况讨论,如图,∠1,∠2,∠3的两边互相平行,由图形可以看出∠1和∠2是邻补角,它们和∠3的关系容易知道一个相等,一个互补.
试题解析:(1)如图①,
∵PE⊥OA,PF⊥OB,
∴∠PEO=∠OFP=90°,
∴∠EPF=360°-90°-90°-55°=125°;
(2)如图②,
∵PE⊥OA,PF⊥OB,
∴∠PEO=∠OFP=90°,
又∵∠OGF=∠PGE,
∴∠P=∠O;
(3)如果一个角的两边分别垂直于另一个角的两边,则这两个角相等或互补;
(4)如果一个角的两边分别平行于另一个角的两边,则这两个角相等或互补.
如图③,
∠1,∠2,∠3的两边互相平行,
∴∠3=∠4,∠4=∠1,∠4+∠2=180°;
∴∠3=∠1,∠3+∠2=180°.
∴这两个角相等或互补.
考点:1.平行线的性质;2.垂线.
3.(1)答案见解析 (2)∠BOE=40°.(3)①不会,比值=1:2;②∠OEC=60°.
【解析】
试题分析:(1)根据OA//CB,得出,再根据已知条件,即可证明∠C+∠ABC=180°,从而得证.(2)根据两直线平行,同旁内角互补求出∠AOC,再求出∠EOB=∠AOC.(3)①根据两直线平行,内错角相等可得∠AOB=∠OBC,再根据三角形的外角性质∠OEC=2∠OBC即可.②根据三角形的内角定理,求出∠COE=∠AOB,从而得到OB、OD、OE是∠AOC的四等分线,在利用三角形的内角定理即可求出∠OEC的度数.
试题解析:(1)∵OA∥CB,∴∠OAB+∠ABC=180°,∵∠C=∠OAB=100°,∴∠C+∠ABC=180°,
∴AB∥OC . (2)∵CB∥OA,∴∠AOC=180°﹣∠C=180°﹣100°=80°,∵OE平分∠COD,∴∠COE=∠EOD,∵∠DOB=∠AOB,∴∠EOB=∠EOD+∠DOB=∠AOC=×80°=40°;(3)①∵CB∥OA,∴∠AOB=∠OBC,∵∠EOB=∠AOB,∴∠EOB=∠OBC,∴∠OEC=∠EOB+∠OBC=2∠OBC,∴∠OBC:∠OEC=1:2,是定值;
②在△COE和△AOB中,∵∠OEC=∠OBA,∠C=∠OAB,∴∠COE=∠AOB,∴OB、OD、OE是∠AOC的四等分线,
∴∠COE=∠AOC=×80°=20°,∴∠OEC=180°﹣∠C﹣∠COE=180°﹣100°﹣20°=60°,∴∠OEC=∠OBA,此时∠OEC=∠OBA=60°.
考点:1、平行线的性质与判定定理 2、三角形的外角性质和内角定理.
4.(1)、①60;②30;③60;(2)、20°
【解析】
试题分析:(1)、根据平行线的性质以及角平分线、垂线的性质得出角度的大小;(2)、根据平行线的性质得出∠BCE=140°,根据角平分线的性质得出∠BCN=70°,根据垂直的性质得出∠BCM=20°.
试题解析:(1)、①60;②30;③60.
(2)、∵AB∥CD, ∴∠B+∠BCE=180°, ∵∠B=40°, ∴∠BCE=180°-∠B=180°-40°=140°.
∵CN是∠BCE的平分线, ∴∠BCN=140°÷2=70° ∵CN⊥CM, ∴∠BCM=90°-∠BCN=90°-70°=20°
考点:平行线的性质
5.(1)证明见解析(2)∠MBC=∠F+∠FEC,证明见解析
【解析】
试题分析:(1)根据三角形外角的性质,可得出∠FEC=∠A+∠ADE,∠F+∠BDF=∠ABC,再根据∠A=∠ABC,即可得出答案;
(2)由BM∥AC,得出∠MBA=∠A,∠A=∠ABC,得出∠MBC=∠MBA+∠ABC=2∠A,结合(1)的结论证得答案即可.
(1)证明:∵∠FEC=∠A+∠ADE,∠F+∠BDF=∠ABC,
∴∠F+∠FEC=∠F+∠A+∠ADE,
∵∠ADE=∠BDF,
∴∠F+∠FEC=∠A+∠ABC,
∵∠A=∠ABC,
∴∠F+∠FEC=∠A+∠ABC=2∠A.
(2)∠MBC=∠F+∠FEC.
证明:∵BM∥AC,
∴∠MBA=∠A,、
∵∠A=∠ABC,
∴∠MBC=∠MBA+∠ABC=2∠A,
又∵∠F+∠FEC=2∠A,
∴∠MBC=∠F+∠FEC.
考点:三角形内角和定理;平行线的性质;三角形的外角性质.
6.见试题解析
【解析】
试题分析:(1)过点P作PE∥l1,∠APE=∠PAC,又因为l1∥l2,所以PE∥l2,所以∠BPE=∠PBD,两个等式相加即可得出结论。(2)不发生(3)若点P在C、D两点的外侧运动时(P点与点C、D不重合),则有两种情形:①如图1,有结论:∠APB=∠PBD-∠PAC. 理由如下:
过点P作PE∥l1,则∠APE=∠PAC,又因为l1∥l2,所以PE∥l2,所以∠BPE=∠PBD,
所以可得出结论∠APB=∠PBD-∠PAC.。
②如图2,有结论:∠APB=∠PAC-∠PBD. 理由如下:过点P作PE∥l2,则∠BPE=∠PBD,
又因为l1∥l2,所以PE∥l1,所以∠APE=∠PAC,所以可得结论∠APB=∠PAC-∠PBD.
试题解析:解:(1)∠APB=∠PAC+∠PBD. 理由如下:
过点P作PE∥l1,
则∠APE=∠PAC,
又因为l1∥l2,所以PE∥l2,所以∠BPE=∠PBD,
所以∠APE+∠BPE=∠PAC+∠PBD,
即∠APB=∠PAC+∠PBD.
(2)若P点在C、D之间运动时∠APB=∠PAC+∠PBD这种关系不变.
(3)若点P在C、D两点的外侧运动时(P点与点C、D不重合),则有两种情形:
①如图1,有结论:∠APB=∠PBD-∠PAC. 理由如下:
过点P作PE∥l1,则∠APE=∠PAC,
又因为l1∥l2,所以PE∥l2,所以∠BPE=∠PBD,
所以∠APB=∠BPE-∠APE,即∠APB=∠PBD-∠PAC.
②如图2,有结论:∠APB=∠PAC-∠PBD. 理由如下:
过点P作PE∥l2,则∠BPE=∠PBD,
又因为l1∥l2,所以PE∥l1,所以∠APE=∠PAC,
所以∠APB=∠APE-∠BPE,即∠APB=∠PAC-∠PBD.
考点:平行线的性质
7.(1)证明略;(2)∠3=∠2﹣∠1;证明略;(3)∠3=360°﹣∠1﹣∠2.证明略;(4)当P在C点上方时,∠3=∠1﹣∠2,当P在D点下方时,∠3=∠2﹣∠1.
【解析】
试题分析:此题是证明题;探究型.主要考查的是平行线的性质,能够正确地作出辅助线,是解决问题的关键.此题四个小题的解题思路是一致的,过P作直线l1、l2的平行线,利用平行线的性质得到和∠1、∠2相等的角,然后结合这些等角和∠3的位置关系,来得出∠1、∠2、∠3的数量关系.
试题解析:
解:(1)证明:过P作PQ∥l1∥l2,
由两直线平行,内错角相等,可得:
∠1=∠QPE、∠2=∠QPF;
∵∠3=∠QPE+∠QPF,
∴∠3=∠1+∠2.
(2)∠3=∠2﹣∠1;
证明:过P作直线PQ∥l1∥l2,
则:∠1=∠QPE、∠2=∠QPF;
∵∠3=∠QPF﹣∠QPE,
∴∠3=∠2﹣∠1.
(3)∠3=360°﹣∠1﹣∠2.
证明:过P作PQ∥l1∥l2;
同(1)可证得:∠3=∠CEP+∠DFP;
∵∠CEP+∠1=180°,∠DFP+∠2=180°,
∴∠CEP+∠DFP+∠1+∠2=360°,
即∠3=360°﹣∠1﹣∠2.
(4)过P作PQ∥l1∥l2;
①当P在C点上方时,
同(2)可证:∠3=∠DFP﹣∠CEP;
∵∠CEP+∠1=180°,∠DFP+∠2=180°,
∴∠DFP﹣∠CEP+∠2﹣∠1=0,
即∠3=∠1﹣∠2.
②当P在D点下方时,
∠3=∠2﹣∠1,解法同上.
综上可知:当P在C点上方时,∠3=∠1﹣∠2,当P在D点下方时,∠3=∠2﹣∠1.
考点:1.平行线的性质;2.三角形的外角性质.
8.见解析;∠APB+∠PBD+∠PAC=360°;∠APB=∠PBD﹣∠PAC.
【解析】
试题分析:过P作PM∥AC,根据平行线的性质得出∠1=∠PAC,∠2=∠PBD,即可得出答案;过P作PM∥AC,根据平行线的性质得出∠1+∠PAC=180°,∠2+∠PBD=180°,相加即可;过P作PM∥AC,根据平行线的性质得出∠MPA=∠PAC,∠MPB=∠PBD,即可得出答案.
试题解析:(1)证明:
如图1,过P作PM∥AC, ∵AC∥BD, ∴AC∥BD∥PM,
∴∠1=∠PAC,∠2=∠PBD, ∴∠APB=∠1+∠2=∠PAC+∠PBD
(2)∠APB+∠PBD+∠PAC=360°,
证明:如图2,
过P作PM∥AC, ∵AC∥BD, ∴AC∥BD∥PM,
∴∠1+∠PAC=180°,∠2+∠PBD=180°, ∴∠1+∠PAC+∠2+∠PBD=360°, 即∠APB+∠PBD+∠PAC=360°;
(3)∠APB=∠PBD﹣∠PAC,
证明:过P作PM∥AC,如图3,
∵AC∥BD, ∴AC∥BD∥PM,
∴∠MPA=∠PAC,∠MPB=∠PBD, ∴∠APB=∠MPB﹣∠MPA=∠PBD﹣∠PAC,
∴∠APB=∠PBD﹣∠PAC.
考点:平行线的性质
9.(1)成立.结论是∠BPD=∠B+∠D,证明见解析,(2)∠BPD=∠BQD+∠B+∠D.(3) 360°.
【解析】
试题分析:(1)延长BP交CD于E,根据两直线平行,内错角相等,求出∠PED=∠B,再利用三角形的一个外角等于和它不相邻的两个内角的和即可说明不成立,应为∠BPD=∠B+∠D;
(2)作射线QP,根据三角形的外角性质可得;
(3)根据三角形的外角性质,把角转化到四边形中再求解.
试题解析:(1)不成立.结论是∠BPD=∠B+∠D
延长BP交CD于点E,
∵AB∥CD
∴∠B=∠BED
又∵∠BPD=∠BED+∠D,
∴∠BPD=∠B+∠D.
(2)结论:∠BPD=∠BQD+∠B+∠D.
(3)连接EG并延长,
根据三角形的外角性质,∠AGB=∠A+∠B+∠E,
又∵∠AGB=∠CGF,
在四边形CDFG中,∠CGF+∠C+∠D+∠F=360°,
∴∠A+∠B+∠C+∠D+∠E+∠F=360°.
考点:1.三角形的外角性质;2.平行线的性质;3.三角形内角和定理.