1、下列每个图形都是若干个棋子围成的正方形图案,图案的每条边(包括两个顶点)上都有以n≥2)个棋子,每个图案的.棋子总数为S,按下图的排列规律推断。S与n之间的关系可以用式子来表示 .
2、某童装厂现有甲种布料38米,乙种布料26米,现计划用这两种布料生产L、M两种型号的童装共50套,已知做一套L型号的童装需用甲种布料0.5米,乙种布料1米,可获利45元;做一套M型号的童装需用甲种布料0.9米,乙种布料0.2米,可获利润30元。设生产L型号的童装套数为x,用这批布料生产这两种型号的童装所获利润为y(元),写出y(元)关于x(套)的函数解析式.
3、某长途汽车客运公司额定旅客可随身携带一定质量的行李.如果超过规定的质量,则需购买行李票,行李费用y(元)是行李质量x(千克)的一次函数,其图象如下图所示.
(1)根据图象数据,求y与x之间的函数关系式.
(2)问旅客最多可免费携带行李的质量是多少千克?
4、某气象研究中心观测一场沙尘暴从发生到结束的全过程。开始时风速平均每小时增加2千米/时,4小时后,沙尘暴经过开阔荒漠地,风速变为平均每小时增加4千米/时。一段时间,风速保持不变。当沙尘暴遇到绿色植被区,其风速平均每小时减少1千米/时,最终停止。结合风速与时间的图象,回答下列问题;
(1)在y轴( )内填入相应的数值;
(2)沙尘暴从发生到结束,共经过多少小时?
(3)求出当x≥25时,风速y(千米/时)与时间x(小时)之间的函数关系式。
5、南方A市欲将一批容易变质的水果运往B市销售,共有飞机、火车、汽车三种运输方式,现只可选择其中的一种,这三种运输方式的主要参与数据如下表所示:
若这批水果在运输(包括装卸)过程中的损耗为200元/h,记A、B两市间的距离为x千米。如果用W1、W2、W3分别表示飞机、火车、汽车运输时总支出费用(包括损耗),求出W1、W2、W3与x间的函数关系式。
6、某地区的电力资源丰富,并且得到了较好的开发。该地区一家供电公司为了鼓励居民用电,采用分段计费的方法来计算电费。月用电量x(度)与相应电费y(元)之间的函数图像如图所示。
(1)填空,月用电量为100度时,应交电费 元;
(2)当x≥100时,求y与x之间的函数关系式;
(3)月用电量为260度时,应交电费多少元?