1.如图,抛物线y=﹣x2﹣2x+3的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点.
(1)求点A、B、C的坐标;
(2)点M(m,0)为线段AB上一点(点M不与点A、B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x轴于点N,可得矩形PQNM.如图,点P在点Q左边,试用含m的式子表示矩形PQNM的周长;
(3)当矩形PQNM的周长最大时,m的值是多少?并求出此时的△AEM的面积;
(4)在(3)的条件下,当矩形PMNQ的周长最大时,连接DQ,过抛物线上一点F作y轴的平行线,与直线AC交于点G(点G在点F的上方).若FG=22DQ,求点F的坐标.
【答案】(1)A(﹣3,0),B(1,0);C(0,3) ;(2)矩形PMNQ的周长=﹣2m2﹣8m+2;(3) m=
﹣2;S=1
2
;(4)F(﹣4,﹣5)或(1,0).
【解析】
【分析】
(1)利用函数图象与坐标轴的交点的求法,求出点A,B,C的坐标;
(2)先确定出抛物线对称轴,用m表示出PM,MN即可;
(3)由(2)得到的结论判断出矩形周长最大时,确定出m,进而求出直线AC解析式,即可;
(4)在(3)的基础上,判断出N应与原点重合,Q点与C点重合,求出DQ=DC=2,再建立方程(n+3)﹣(﹣n2﹣2n+3)=4即可.
【详解】
(1)由抛物线y=﹣x2﹣2x+3可知,C(0,3).
令y=0,则0=﹣x2﹣2x+3,
解得,x=﹣3或x=l,
∴A(﹣3,0),B(1,0).
(2)由抛物线y=﹣x2﹣2x+3可知,对称轴为x=﹣1.
∵M(m,0),
∴PM=﹣m2﹣2m+3,MN=(﹣m﹣1)×2=﹣2m﹣2,∴矩形PMNQ的周长=2(PM+MN)=(﹣m2﹣2m+3﹣2m﹣2)×2=﹣2m2﹣8m+2.(3)∵﹣2m2﹣8m+2=﹣2(m+2)2+10,
∴矩形的周长最大时,m=﹣2.
∵A(﹣3,0),C(0,3),
设直线AC的解析式y=kx+b,
∴
30
3
k b
b
-+=⎧
⎨
=
⎩
解得k=l,b=3,∴解析式y=x+3,令x=﹣2,则y=1,∴E(﹣2,1),
∴EM=1,AM=1,
∴S=1
2AM×EM=
1
2
.
(4)∵M(﹣2,0),抛物线的对称轴为x=﹣l,
∴N应与原点重合,Q点与C点重合,
∴DQ=DC,
把x=﹣1代入y=﹣x2﹣2x+3,解得y=4,
∴D(﹣1,4),
∴DQ=DC
∵FG=
,
∴FG=4.
设F(n,﹣n2﹣2n+3),则G(n,n+3),
∵点G在点F的上方且FG=4,
∴(n+3)﹣(﹣n2﹣2n+3)=4.
解得n=﹣4或n=1,
∴F(﹣4,﹣5)或(1,0).
【点睛】
此题是二次函数综合题,主要考查了函数图象与坐标轴的交点的求法,待定系数法求函数解析式,函数极值的确定,解本题的关键是用m表示出矩形PMNQ的周长.
2.如图,直线y=-1
2
x-3与x轴,y轴分别交于点A,C,经过点A,C的抛物线y=ax2+bx
﹣3与x轴的另一个交点为点B(2,0),点D是抛物线上一点,过点D作DE⊥x轴于点E,连接AD,DC.设点D的横坐标为m.
(1)求抛物线的解析式;
(2)当点D在第三象限,设△DAC的面积为S,求S与m的函数关系式,并求出S的最大值及此时点D的坐标;
(3)连接BC,若∠EAD=∠OBC,请直接写出此时点D的坐标.
【答案】(1)y =
14x 2+x ﹣3;(2)S △ADC =﹣34(m+3)2+274;△ADC 的面积最大值为274;此时D(﹣3,﹣
154
);(3)满足条件的点D 坐标为(﹣4,﹣3)或(8,21). 【解析】
【分析】 (1)求出A 坐标,再用待定系数法求解析式;(2)设DE 与AC 的交点为点F.设点D 的坐标为:(m ,14m 2+m ﹣3),则点F 的坐标为:(m ,﹣12
m ﹣3),根据S △ADC =S △ADF +S △DFC 求出解析式,再求最值;(3)①当点D 与点C 关于对称轴对称时,D(﹣4,﹣3),根据对称性此时∠EAD =∠ABC .
②作点D(﹣4,﹣3)关于x 轴的对称点D′(﹣4,3),直线AD′的解析式为y =
32
x+9,解方程组求出函数图像交点坐标.
【详解】 解:(1)在y =﹣
12
x ﹣3中,当y =0时,x =﹣6, 即点A 的坐标为:(﹣6,0),
将A(﹣6,0),B(2,0)代入y =ax 2+bx ﹣3得: 366304230a b a b --=⎧⎨+-=⎩
, 解得:141
a b ⎧=⎪⎨⎪=⎩,
∴抛物线的解析式为:y =
14x 2+x ﹣3; (2)设点D 的坐标为:(m ,
14m 2+m ﹣3),则点F 的坐标为:(m ,﹣12m ﹣3), 设DE 与AC 的交点为点F.
∴DF =﹣12m ﹣3﹣(14m 2+m ﹣3)=﹣14m 2﹣32
m ,
∴S △ADC =S △ADF +S △DFC =12DF•AE+12•DF•OE =12DF•OA =1
2×(﹣14m 2﹣32
m)×6 =﹣
34m 2﹣92m =﹣34
(m+3)2+274, ∵a =﹣34
<0, ∴抛物线开口向下,
∴当m =﹣3时,S △ADC 存在最大值
274, 又∵当m =﹣3时,
14m 2+m ﹣3=﹣154, ∴存在点D(﹣3,﹣154),使得△ADC 的面积最大,最大值为274
; (3)①当点D 与点C 关于对称轴对称时,D(﹣4,﹣3),根据对称性此时∠EAD =∠ABC . ②作点D(﹣4,﹣3)关于x 轴的对称点D′(﹣4,3),
直线AD′的解析式为y =32
x+9, 由2392134
y x y x x ⎧=+⎪⎪⎨⎪=+-⎪⎩,解得60x y =-⎧⎨=⎩或821x y =⎧⎨=⎩, 此时直线AD′与抛物线交于D(8,21),满足条件,
综上所述,满足条件的点D 坐标为(﹣4,﹣3)或(8,21)
【点睛】
3.在平面直角坐标系中,抛物线y=﹣x2+bx+c经过点A、B、C,已知A(﹣1,0),C (0,3).
(1)求抛物线的解析式;
(2)如图1,P为线段BC上一点,过点P作y轴的平行线,交抛物线于点D,当△CDP为等腰三角形时,求点P的坐标;
(3)如图2,抛物线的顶点为E,EF⊥x轴于点F,N是线段EF上一动点,M(m,0)是x 轴一个动点,若∠MNC=90°,请求出m的取值范围.
【答案】(1)y=﹣x2+2x+3;(2)点P的坐标为(1,2)或(2,1)或(3﹣
2,23)
5
5 4
m
-≤≤
【解析】
【分析】
(1)利用待定系数法即可求得此抛物线的解析式;
(2)由待定系数法即可求得直线BC的解析式,再设P(t,3﹣t),即可得D(t,﹣t2+2t+3),即可求得PD的长,然后分三种情况讨论,求点P的坐标;
(3)直角三角形斜边上的中线等于斜边的一半列出关系式m=(n﹣3
2
)2﹣
5
4
,然后根
据n的取值得到最小值.
【详解】
解:(1)∵抛物线y=﹣x2+bx+c经过点A、B、C,A(﹣1,0),C(0,3),
∴
10
3
b c
c
--+=
⎧
⎨
=
⎩
,解得b=2,c=3.
故该抛物线解析式为:y=﹣x2+2x+3.(2)令﹣x2+2x+3=0,
解得x1=﹣1,x2=3,
即B(3,0),
设直线BC的解析式为y=kx+b′,
则330b k b ''=⎧⎨+=⎩
, 解得:k=-1,b’=3
故直线BC 的解析式为y =﹣x +3;
∴设P (t ,3﹣t ),
∴D (t ,﹣t 2+2t +3),
∴PD =(﹣t 2+2t +3)﹣(3﹣t )=﹣t 2+3t ,
∵OB =OC =3,
∴△BOC 是等腰直角三角形,
∴∠OCB =45°,
当CD =PC 时,则∠CPD =∠CDP ,
∵PD ∥y 轴,
∴∠CPD =∠OCB =45°,
∴∠CDP =45°,
∴∠PCD =90°,
∴直线CD 的解析式为y =x +3,
解2323y x y x x =+⎧⎨=-++⎩得03x y =⎧⎨=⎩或14x y =⎧⎨=⎩
∴D (1,4),
此时P (1,2);
当CD =PD 时,则∠DCP =∠CPD =45°,
∴∠CDP =90°,
∴CD ∥x 轴,
∴D 点的纵坐标为3,
代入y =﹣x 2+2x +3得,3=﹣x 2+2x +3,
解得x =0或x =2,
此时P (2,1);
当PC =PD 时,∵PC t , ∴
=﹣t 2+3t ,
解得t =0或t =3,
此时P (3);
综上,当△CDP 为等腰三角形时,点P 的坐标为(1,2)或(2,1)或(3) (3)如图2,由(1)y =﹣x 2+2x +3=﹣(x ﹣1)2+4,
∴E (1,4),
设N (1,n ),则0≤n ≤4,
取CM 的中点Q (
2m ,32), ∵∠MNC =90°,
∴NQ =12CM , ∴4NQ 2=CM 2, ∵NQ 2=(1﹣
2m )2+(n ﹣32)2, ∴4[(1﹣2m )2+(n ﹣32
)2]=m 2+9, 整理得,m =(n ﹣
32)2﹣54, ∵0≤n ≤4,
当n =32时,m 最小值=﹣54
,n =4时,m =5, 综上,m 的取值范围为:﹣
54≤m ≤5.
【点睛】
此题考查了待定系数法求函数的解析式、平行线的性质、二次函数的最值问题、判别式的应用以及等腰直角三角形的性质等知识.此题综合性很强,难度较大,注意掌握数形结合思想、分类讨论思想与方程思想的应用.
4.如图,抛物线y=ax 2+6x+c 交x 轴于A ,B 两点,交y 轴于点C .直线y=x ﹣5经过点B ,C .
(1)求抛物线的解析式;
(2)过点A 的直线交直线BC 于点M .
②连接AC,当直线AM与直线BC的夹角等于∠ACB的2倍时,请直接写出点M的坐标.
【答案】(1)抛物线解析式为y=﹣x2+6x﹣5;(2)①P点的横坐标为45+41
或
5-41
②点M的坐标为(13
6
,﹣
17
6
)或(
23
6
,﹣
7
6
).
【解析】
分析:(1)利用一次函数解析式确定C(0,-5),B(5,0),然后利用待定系数法求抛物线解析式;
(2)①先解方程-x2+6x-5=0得A(1,0),再判断△OCB为等腰直角三角形得到
∠OBC=∠OCB=45°,则△AMB为等腰直角三角形,所以2,接着根据平行四边形的性质得到2,PQ⊥BC,作PD⊥x轴交直线BC于D,如图1,利用∠PDQ=45°得到2PQ=4,设P(m,-m2+6m-5),则D(m,m-5),讨论:当P点在直线BC上方时,PD=-m2+6m-5-(m-5)=4;当P点在直线BC下方时,PD=m-5-(-m2+6m-5),然后分别解方程即可得到P点的横坐标;
②作AN⊥BC于N,NH⊥x轴于H,作AC的垂直平分线交BC于M1,交AC于E,如图2,利用等腰三角形的性质和三角形外角性质得到∠AM1B=2∠ACB,再确定N(3,-2),
AC的解析式为y=5x-5,E点坐标为(1
2
,-
5
2
),利用两直线垂直的问题可设直线EM1的
解析式为y=-1
5
x+b,把E(
1
2
,-
5
2
)代入求出b得到直线EM1的解析式为y=-
1
5
x-
12
5
,则
解方程组
5
112
55
y x
y x
-
⎧
⎪
⎨
--
⎪⎩
=
=
得M1点的坐标;作直线BC上作点M1关于N点的对称点M2,
如图2,利用对称性得到∠AM2C=∠AM1B=2∠ACB,设M2(x,x-5),根据中点坐标公式得到3=13
+ 6
2
x
,然后求出x即可得到M2的坐标,从而得到满足条件的点M的坐标.
详解:(1)当x=0时,y=x﹣5=﹣5,则C(0,﹣5),
当y=0时,x﹣5=0,解得x=5,则B(5,0),
把B(5,0),C(0,﹣5)代入y=ax2+6x+c得
25300
5
a c
c
++=
⎧
⎨
=-
⎩
,解得
1
5
a
b
=-
⎧
⎨
=-
⎩
,
∴抛物线解析式为y=﹣x2+6x﹣5;
(2)①解方程﹣x2+6x﹣5=0得x1=1,x2=5,则A(1,0),
∵B(5,0),C(0,﹣5),
∴△OCB为等腰直角三角形,
∴∠OBC=∠OCB=45°,
∵AM⊥BC,
∴△AMB为等腰直角三角形,
∴AM=2
2
AB=
2
2
×4=22,
∵以点A,M,P,Q为顶点的四边形是平行四边形,AM∥PQ,
∴PQ=AM=22,PQ⊥BC,
作PD⊥x轴交直线BC于D,如图1,则∠PDQ=45°,
∴222=4,
设P(m,﹣m2+6m﹣5),则D(m,m﹣5),
当P点在直线BC上方时,
PD=﹣m2+6m﹣5﹣(m﹣5)=﹣m2+5m=4,解得m1=1,m2=4,
当P点在直线BC下方时,
PD=m﹣5﹣(﹣m2+6m﹣5)=m2﹣5m=4,解得m1=
5+41
2
,m2=
5-41
2
,综上所述,P点的横坐标为4或
5+
41
2
或
5-41
2
;
②作AN⊥BC于N,NH⊥x轴于H,作AC的垂直平分线交BC于M1,交AC于E,如图2,
∵M1A=M1C,
∴∠ACM1=∠CAM1,
∴∠AM1B=2∠ACB,
∵△ANB为等腰直角三角形,
∴AH=BH=NH=2,
∴N(3,﹣2),
易得AC的解析式为y=5x﹣5,E点坐标为(1
2
,﹣
5
2
,
设直线EM1的解析式为y=﹣1
5
x+b,
把E(1
2
,﹣
5
2
)代入得﹣
1
10
+b=﹣
5
2
,解得b=﹣
12
5
,
∴直线EM1的解析式为y=﹣1
5x﹣
12
5
解方程组
5
112
55
y x
y x
=-
⎧
⎪
⎨
=--
⎪⎩
得
13
6
17
6
x
y
⎧
=
⎪⎪
⎨
⎪=-
⎪⎩
,则M1(
13
6
,﹣
17
6
);
作直线BC上作点M1关于N点的对称点M2,如图2,则∠AM2C=∠AM1B=2∠ACB,设M2(x,x﹣5),
∵3=13
+ 6
2
x
∴x=23
6
,
∴M 2(236,﹣76
). 综上所述,点M 的坐标为(
136,﹣176)或(236,﹣76). 点睛:本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质、等腰直角的判定与性质和平行四边形的性质;会利用待定系数法求函数解析式;理解坐标与图形性质;会运用分类讨论的思想解决数学问题.
5.如图1,二次函数234y ax ax a =--的图像与x 轴交于,A B 两点(点A 在点B 的左侧),与y 轴交于点()0,3C -.
(1)求二次函数的表达式及点A 、点B 的坐标;
(2)若点D 在二次函数图像上,且45
DBC ABC S S =△△,求点D 的横坐标; (3)将直线BC 向下平移,与二次函数图像交于,M N 两点(M 在N 左侧),如图2,过M 作ME y ∥轴,与直线BC 交于点E ,过N 作NF y ∥轴,与直线BC 交于点F ,当MN ME +的值最大时,求点M 的坐标.
【答案】(1)y =239344
x x --,A (﹣1,0),B (4,0);(2)D 点的横坐标为22﹣2,2;(3)M (
13,﹣113) 【解析】
【分析】
(1)求出a ,即可求解;
(2)求出直线BC 的解析式,过点D 作DH ∥y 轴,与直线BC 交于点H ,根据三角形面积的关系求解;
(3)过点M 作MG ∥x 轴,交FN 的延长线于点G ,设M (m ,
34m 2﹣94m ﹣3),N (n ,34
n 2﹣94n ﹣3),判断四边形MNFE 是平行四边形,根据ME =NF ,求出m +n =4,
4
m2+3m+5﹣
5
2
m=﹣
3
4
(m﹣
1
3
)2+
61
12
,即可求M;【详解】
(1)y=ax2﹣3ax﹣4a与y轴交于点C(0,﹣3),
∴a=
3
4
,
∴y=
3
4
x2﹣
9
4
x﹣3,
与x轴交点A(﹣1,0),B(4,0);
(2)设直线BC的解析式为y=kx+b,
∴
40
3
k b
b
+=
⎧
⎨
=-
⎩
,
∴
3
4
3
k
b
⎧
=-
⎪
⎨
⎪=-
⎩
,
∴y=
3
4
x﹣3;
过点D作DH∥y轴,与直线BC交于点H,
设H(x,
3
4
x﹣3),D(x,
3
4
x2﹣
9
4
x﹣3),
∴DH=|
3
4
x2﹣3x|,
∵S△ABC=115
53
23
⨯⨯=,
∴S△DBC=415
52
⨯=6,
∴S△DBC=2×|
3
4
x2﹣3x|=6,
∴x=2+22,x=2﹣22,x=2;
∴D点的横坐标为2+22,2﹣22,2;
(3)过点M作MG∥x轴,交FN的延长线于点G,
设M(m,3
4
m2﹣
9
4
m﹣3),N(n,
3
4
n2﹣
9
4
n﹣3),
则E(m,3
4
m﹣3),F(n,
3
4
n﹣3),
∴ME=﹣3
4
m2+3m,NF=﹣
3
4
n2+3n,
∵EF∥MN,ME∥NF,
∴四边形MNFE是平行四边形,∴ME=NF,
∴﹣3
4
m2+3m=﹣
3
4
n2+3n,
∴m+n=4,
∴MG=n﹣m=4﹣2m,
∴∠NMG=∠OBC,
∴cos∠NMG=cos∠OBC=MG OB
MN BC
,∵B(4,0),C(0,﹣3),
∴OB=4,OC=3,
在Rt△BOC中,BC=5,
∴MN=5
4(n﹣m)=
5
4
(4﹣2m)=5﹣
5
2
m,
∴ME+MN=﹣3
4
m2+3m+5﹣
5
2
m=﹣
3
4
(m﹣
1
3
)2+
61
12
,
∵﹣3
4
<0,
∴当m=1
3
时,ME+MN有最大值,
∴M(1
3,﹣
11
3
)
【点睛】
本题考查二次函数图象及性质,一次函数图象及性质;熟练掌握待定系数法求函数解析式的方法,结合三角形的性质解题.
6.如图甲,直线y=﹣x+3与x轴、y轴分别交于点B、点C,经过B、C两点的抛物线
y=x2+bx+c与x轴的另一个交点为A,顶点为P.
(1)求该抛物线的解析式;
(2)在该抛物线的对称轴上是否存在点M,使以C,P,M为顶点的三角形为等腰三角形?若存在,请直接写出所符合条件的点M的坐标;若不存在,请说明理由;
(3)当0<x<3时,在抛物线上求一点E,使△CBE的面积有最大值(图乙、丙供画图探究).
【答案】(1)y=x2﹣4x+3;(2)(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);(3)E点坐标为(,)时,△CBE的面积最大.
【解析】
试题分析:(1)由直线解析式可求得B、C坐标,利用待定系数法可求得抛物线解析式;(2)由抛物线解析式可求得P点坐标及对称轴,可设出M点坐标,表示出MC、MP和PC 的长,分MC=MP、MC=PC和MP=PC三种情况,可分别得到关于M点坐标的方程,可求得M点的坐标;
(3)过E作EF⊥x轴,交直线BC于点F,交x轴于点D,可设出E点坐标,表示出F点的坐标,表示出EF的长,进一步可表示出△CBE的面积,利用二次函数的性质可求得其取得最大值时E点的坐标.
试题解析:(1)∵直线y=﹣x+3与x轴、y轴分别交于点B、点C,
∴B(3,0),C(0,3),
把B、C坐标代入抛物线解析式可得,解得,
∴抛物线解析式为y=x2﹣4x+3;
(2)∵y=x2﹣4x+3=(x﹣2)2﹣1,
∴抛物线对称轴为x=2,P(2,﹣1),
设M(2,t),且C(0,3),
∴MC=,MP=|t+1|,PC=,
∵△CPM为等腰三角形,
∴有MC=MP、MC=PC和MP=PC三种情况,
①当MC=MP时,则有=|t+1|,解得t=,此时M(2,);
②当MC=PC时,则有=2,解得t=﹣1(与P点重合,舍去)或t=7,此时M(2,7);
③当MP=PC时,则有|t+1|=2,解得t=﹣1+2或t=﹣1﹣2,此时M(2,﹣
1+2)或(2,﹣1﹣2);综上可知存在满足条件的点M,其坐标为(2,)或(2,7)或(2,﹣1+2)或(2,﹣1﹣2);
(3)如图,过E作EF⊥x轴,交BC于点F,交x轴于点D,
设E(x,x2﹣4x+3),则F(x,﹣x+3),
∵0<x<3,
∴EF=﹣x+3﹣(x2﹣4x+3)=﹣x2+3x,
∴S△CBE=S△EFC+S△EFB=EF•OD+EF•BD=EF•OB=×3(﹣x2+3x)=﹣(x﹣)2+,∴当x=时,△CBE的面积最大,此时E点坐标为(,),
即当E点坐标为(,)时,△CBE的面积最大.
考点:二次函数综合题.
7.如图,已知抛物线的图象与x轴的一个交点为B(5,0),另一个交点为A,且与y轴交于点C(0,5)。
(1)求直线BC与抛物线的解析式;
(2)若点M是抛物线在x轴下方图象上的动点,过点M作MN∥y轴交直线BC于点N,求MN的最大值;
(3)在(2)的条件下,MN取得最大值时,若点P是抛物线在x轴下方图象上任意一点,以BC为边作平行四边形CBPQ,设平行四边形CBPQ的面积为S1,△ABN的面积为
S2,且S1=6S2,求点P的坐标。
【答案】(1)
(2)
(3)P的坐标为(-1,12)或(6,5)或(2,-3)或(3,-4)
【解析】
【分析】
(1)由B(5,0),C(0,5),应用待定系数法即可求直线BC与抛物线的解析式。(2)构造MN关于点M横坐标的函数关系式,应用二次函数最值原理求解。
(3)根据S1=6S2求得BC与PQ的距离h,从而求得PQ由BC平移的距离,根据平移的性质求得PQ的解析式,与抛物线联立,即可求得点P的坐标。
【详解】
解:(1)设直线BC的解析式为,
将B(5,0),C(0,5)代入,得,得。
∴直线BC的解析式为。
将B(5,0),C(0,5)代入,得,得。
∴抛物线的解析式。
(2)∵点M是抛物线在x轴下方图象上的动点,∴设M。
∵点N是直线BC上与点M横坐标相同的点,∴N。
∵当点M在抛物线在x轴下方时,N的纵坐标总大于M的纵坐标。
∴。
∴MN的最大值是。
(3)当MN取得最大值时,N。
∵的对称轴是,B(5,0),∴A(1,0)。∴AB=4。
∴。
由勾股定理可得。
设BC与PQ的距离为h,则由S1=6S2得:,即。
如图,过点B作平行四边形CBPQ的高BH,过点H作x轴的垂线交点E ,则
BH=,EH是直线BC沿y轴方向平移的距离。
易得,△BEH 是等腰直角三角形, ∴EH=
。
∴直线BC 沿y 轴方向平移6个单位得PQ 的解析式:
或
。
当
时,与联立,得
,解得
或
。此时,点P 的坐标为(-1,12)或(6,5)。
当
时,与
联立,得 ,解得
或
。此时,点P 的坐标为(2,-3)或(3,-
4)。
综上所述,点P 的坐标为(-1,12)或(6,5)或(2,-3)或(3,-4)。
8.当今,越来越多的青少年在观看影片《流浪地球》后,更加喜欢同名科幻小说,该小说销量也急剧上升.书店为满足广大顾客需求,订购该科幻小说若干本,每本进价为20元.根据以往经验:当销售单价是25元时,每天的销售量是250本;销售单价每上涨1元,每天的销售量就减少10本,书店要求每本书的利润不低于10元且不高于18元. (1)直接写出书店销售该科幻小说时每天的销售量y (本)与销售单价x (元)之间的函数关系式及自变量的取值范围.
(2)书店决定每销售1本该科幻小说,就捐赠(06)a a <≤元给困难职工,每天扣除捐赠后可获得最大利润为1960元,求a 的值.
【答案】(1)10500(3038)y x x =-+;(2)2a =. 【解析】 【分析】
(1)根据题意列函数关系式即可;
(2)设每天扣除捐赠后可获得利润为w 元.根据题意得到w=(x-20-a )(-10x+500)=-10x 2+(10a+700)x-500a-10000(30≤x≤38)求得对称轴为x =35+1
2
a ,且0<a ≤6,则30<35+
12a ≤38,则当1
352x a =+时,w 取得最大值,解方程得到a 1=2,a 2=58,于是得到a=2.
【详解】
解:(1)根据题意得,()()2501025105003038y x x x =--=-+; (2)设每天扣除捐赠后可获得利润为w 元.
()()()()220105001010700500100003038w x a x x a x a x =---+=-++--
对称轴为x =35+12a ,且0<a ≤6,则30<35+1
2
a ≤38, 则当1
352
x a =+时,w 取得最大值, ∴1135201035500196022a a x a ⎡⎤⎛⎫⎛
⎫+
---++= ⎪ ⎪⎢⎥⎝
⎭⎝⎭⎣⎦
∴122,58a a ==(不合题意舍去),
∴2a =. 【点睛】
本题考查了二次函数的应用,难度较大,最大销售利润的问题常利用函数的增减性来解答,正确的理解题意,确定变量,建立函数模型.
9.抛物线y=x 2+bx+c 与x 轴交于A (1,0),B (m ,0),与y 轴交于C .
(1)若m=﹣3,求抛物线的解析式,并写出抛物线的对称轴;
(2)如图1,在(1)的条件下,设抛物线的对称轴交x 轴于D ,在对称轴左侧的抛物线上有一点E ,使S △ACE =
S △ACD ,求点E 的坐标;
(3)如图2,设F (﹣1,﹣4),FG ⊥y 于G ,在线段OG 上是否存在点P ,使∠OBP=∠FPG ?若存在,求m 的取值范围;若不存在,请说明理由.
【答案】(1)抛物线的解析式为:y=x 2+2x ﹣3=(x+1)2﹣4;对称轴是:直线x=﹣1;(2)点E 的坐标为E (﹣4,5)(3)当﹣4≤m <0或m=3时,在线段OG 上存在点P ,使∠OBP=∠FPG. 【解析】
试题分析:(1)利用待定系数法求二次函数的解析式,并配方求对称轴;(2)如图1,
设E(m,m2+2m﹣3),先根据已知条件求S△ACE=10,根据不规则三角形面积等于铅直高度与水平宽度的积列式可求得m的值,并根据在对称轴左侧的抛物线上有一点E,则点E 的横坐标小于﹣1,对m的值进行取舍,得到E的坐标;
(3)分两种情况:①当B在原点的左侧时,构建辅助圆,根据直径所对的圆周角是直角,只要满足∠BPF=90°就可以构成∠OBP=∠FPG,如图2,求出圆E与y轴有一个交点时的m值,则可得取值范围;②当B在原点的右侧时,只有△OBP是等腰直角三角形,
△FPG也是等腰直角三角形时满足条件,直接计算即可.
试题解析:(1)当m=﹣3时,B(﹣3,0),
把A(1,0),B(﹣3,0)代入到抛物线y=x2+bx+c中得:,解得,
∴抛物线的解析式为:y=x2+2x﹣3=(x+1)2﹣4;对称轴是:直线x=﹣1;
(2)如图1,设E(m,m2+2m﹣3),
由题意得:AD=1+1=2,OC=3,
S△ACE=S△ACD=×ADOC=×2×3=10,
设直线AE的解析式为:y=kx+b,
把A(1,0)和E(m,m2+2m﹣3)代入得,
,解得:,
∴直线AE的解析式为:y=(m+3)x﹣m﹣3,∴F(0,﹣m﹣3),
∵C(0,﹣3),∴FC=﹣m﹣3+3=﹣m,∴S△ACE=FC(1﹣m)=10,
﹣m(1﹣m)=20,m2﹣m﹣20=0,
(m+4)(m﹣5)=0,
m1=﹣4,m2=5(舍),
∴E(﹣4,5);
(3)如图2,当B在原点的左侧时,连接BF,以BF为直径作圆E,当⊙E与y轴相切时,设切点为P,
∴∠BPF=90°,∴∠FPG+∠OPB=90°,∵∠OPB+∠OBP=90°,∴∠OBP=∠FPG,
连接EP,则EP⊥OG,
∵BE=EF,∴EP是梯形的中位线,∴OP=PG=2,
∵FG=1,tan∠FPG=tan∠OBP=,
∴,∴m=﹣4,
∴当﹣4≤m<0时,在线段OG上存在点P,使∠OBP=∠FPG;如图3,当B在原点的右侧时,要想满足∠OBP=∠FPG,
则∠OBP=∠OPB=∠FPG,∴OB=OP,
∴△OBP是等腰直角三角形,△FPG也是等腰直角三角形,
∴FG=PG=1,∴OB=OP=3,∴m=3,
综上所述,当﹣4≤m<0或m=3时,在线段OG上存在点P,使∠OBP=∠FPG.
考点:二次函数的综合题.
10.如图,抛物线y=ax2+c(a≠0)经过C(2,0),D(0,﹣1)两点,并与直线y=kx交于A、B两点,直线l过点E(0,﹣2)且平行于x轴,过A、B两点分别作直线l的垂线,垂足分别为点M、N.
(1)求此抛物线的解析式;
(2)求证:AO=AM;
(3)探究:
①当k=0时,直线y=kx与x轴重合,求出此时的值;
②试说明无论k取何值,的值都等于同一个常数.
【答案】解:(1)y=x2﹣1
(2)详见解析
(3)详见解析
【解析】
【分析】
(1)把点C、D的坐标代入抛物线解析式求出a、c,即可得解。
(2)根据抛物线解析式设出点A的坐标,然后求出AO、AM的长,即可得证。
(3)①k=0时,求出AM、BN的长,然后代入计算即可得解;
②设点A(x1,x12﹣1),B(x2,x22﹣1),然后表示出,再联立抛物线与
直线解析式,消掉未知数y得到关于x的一元二次方程,利用根与系数的关系表示出
x1+x2,x1•2,并求出x12+x22,x12•x22,然后代入进行计算即可得解。
【详解】
解:(1)∵抛物线y=ax2+c(a≠0)经过C(2,0),D(0,﹣1),
∴,解得。
∴抛物线的解析式为y=x2﹣1。
(2)证明:设点A的坐标为(m,m2﹣1),则。
∵直线l过点E(0,﹣2)且平行于x轴,∴点M的纵坐标为﹣2。∴AM=m2﹣1﹣(﹣2)=m2+1。
∴AO=AM。
(3)①k=0时,直线y=kx与x轴重合,点A、B在x轴上,
∴AM=BN=0﹣(﹣2)=2,
∴。
②k取任何值时,设点A(x1,x12﹣1),B(x2,x22﹣1),则。联立,消掉y得,x2﹣4kx﹣4=0,
由根与系数的关系得,x1+x2=4k,x1•x2=﹣4,
∴x12+x22=(x1+x2)2﹣2x1•x2=16k2+8,x12•x22=16。
∴。
∴无论k取何值,的值都等于同一个常数1。