一、填空题:
1.课程教材要发挥〔培根铸魂〕、〔启智增慧〕的作用。
2.义务教育课程规定了〔教育目标〕、〔教育内容〕和〔教学根本要求〕,表达国家意志,在〔立德树人〕中发挥着关键作用。
3.随着义务教育全面普及,教育需求从〔“有学上〞〕转向〔“上好学〞〕,必须进一步明确“〔培养什么人〕、〔怎样培养人〕、〔为谁培养人〕〞,优化学校育人蓝图。
4.全面贯彻党的教育方针,遵循教育教学规律,落实〔立德树人〕根本任务,开展素养教育。以人民为中心,扎根中国大地办教育。坚持〔德育为先〕,提升〔智育水平〕,强化〔体育美育〕,落实〔劳动教育〕。
5.聚焦中国学生开展核心素养,培养学生适应未来开展的〔正确价值观〕、〔必备品行〕和〔关键能力〕,引导学生明确人生开展方向,成长为〔德智体美劳〕全面开展的社会主义建设者和人。
6.全面落实〔有理想〕、〔有本领〕、〔有担当〕的时代新人培养要求,确立课程修订的根本遵循。准确理解和把握X、关于教育改革的各项要求,将社会主义〔先进文化〕、〔文化〕、〔中华优秀传统文化〕、〔〕、〔生命安全与健康〕等重大主题教育有机融入课程,增强课程思想性。
7.强化课程〔综合性〕和〔实践性〕,推进育人方法变革,着力开展学生核心素养。凸显学生〔主体地位〕,关注学生〔个性化〕、〔多样化〕的学习和开展需求,增强课程〔适宜性〕。坚持与时俱进,反映经济社会开展新变化、科学技术进步新成果,更新课程内容,表达课程〔时代性〕。
8.遵循学生身心开展规律,强化〔一体化〕设置,促进〔学段衔接〕,提升课程〔科学性〕和〔系统性〕。进一步精选对学生终身开展有价值的课程内容,〔减负提质〕。
9.结合义务教育性质及课程定位,从〔有理想〕、〔有本领〕、〔有担当〕三个方面,明确义务教育阶段时代新人培养的具体要求。
10.落实X、“双减〞要求,在保持义务教育阶段九年〔9522〕总课时数不变的根底上,调整优化课程设置。
11.将小学原品德与生活、品德与社会和初思想品德整合为〔道德与法治〕,进行〔一体化〕设计。改革艺术课程设置,〔一至七年级〕以音乐、美术为主线,融入〔舞蹈、〔戏剧、〔影视〕等内容,〔八至九年级〕分项选择开设。将劳动、信息科技从〔综合实践活动〕课程中出来。科学、综合实践活动起始年级提前至〔一年级〕。
11.各课程标准基于义务教育培养目标,将党的教育方针具体化细化为本课程应着力培养的核心素养,表达〔正确价值观〕、〔必备品行〕和〔关键能力〕的培养要求。
13.设立〔跨学科主题〕学习活动,强化学科间相互〔关联〕,带动课程〔综合化〕实施,强化〔实践性〕要求。
14.各课程标准依据核心素养开展水平,结合课程内容,整体刻画不同学段学生学业成绩的具体表现特征,形成〔学业质量标准〕,引导和援助教师把握教学〔深度〕与〔广度〕,为教材编写、教学实施和考试评价等〔提供依据〕。
15.各课程标准针对〔内容要求〕提出〔学业要求〕、〔教学提示〕,细化了评价与考试命题建议,注重完成“〔教一学一评〕〞一致性,增加了教学、评价案例,不仅明确了〔为什么教〕、〔教什么〕、〔教到什么程度〕,而且强化了〔怎么教〕的具体指导,做到好用、管用。
16.注重〔幼小衔接〕,基于对学生在健康、言语、社会、科学、艺术领域开展水平的评估,合理设计小学〔一至二年级〕课程,注重〔活动化〕、〔游戏化〕、〔生活化〕的学习设计。
17.依据学生从小学到初中在认知、感情、社会性等方面的开展,合理安排不同学段内容,表达学习目标的〔连续性〕和〔进阶性〕。
二、简答题:
1.说说2022版课程标准的修订原则
答:(-)坚持目标导向、(-)坚持问题导向、(三)坚持创新导向
2.说说2022版课程标准的主要变化
答:〔一〕关于课程方案
一是完善了培养目标。二是优化了课程设置。三是细化了实施要求。
〔二〕关于课程标准
一是强化了课程育人导向。二是优化了课程内容结构。三是研制了学业质量标准。
四是增强了指导性。五是强化了学段衔接。
课程性质、课程理念测试题
一、课程性质
1.数学是研究〔数量关系〕和〔空间形式〕的科学。
2.数学源于对〔现实世界〕的抽象,通过对〔数量〕和〔数量关系〕、〔图形〕和〔图形关系〕的抽象,得到数学的研究对象及其关系;
3.基于抽象结构,通过对研究对象的〔符号运算〕、〔形式推理〕、〔模型构建〕等,形成数学的结论和方法,援助人们认识、理解和表达现实世界的本质、关系和规律。
4.数学不仅是〔运算和推理〕的工具,还是〔表达和交流〕的言语。
5.数学在形成人的〔理性思维〕、〔科学精神〕和促进个人〔智力开展〕中发挥着不可替代的作用。数学素养是现代社会每一个公民应当具备的根本素养。
6.数学教育承载着落实〔立德树人〕根本任务、实施〔素养教育〕的功能。义务教育数学课程具有〔根底性〕、〔普及性〕和〔开展性〕。
7.学生通过数学课程的学习,掌握适应现代生活及进一步学习必备的〔根底知识〕和〔根本技能〕、〔根本思想〕和〔根本活动经验〕。
二、课程理念
1.义务教育数学课程以〔X〕为指导,落实〔立德树人〕根本任务,致力于完成义务教育阶段的培养目标,使得〔人人都能获得良好的数学教育〕,〔不同的人在数学上得到不同的开展〕,逐渐形成适应终身开展需要的〔核心素养〕。
2.课程目标以学生开展为本,以〔核心素养〕为导向,进一步强调使学生获得数学〔根底知识〕、〔根本技能〕、〔根本思想〕和〔根本活动经验〕〔简称“四基"〕的获得与开展,开展运用数学知识与方法〔觉察〕、〔提出〕、〔分析〕和〔解决问题〕的能力〔简称“四能〞〕,形成正确的感情、态度和价值观。
3.课程内容组织重点是对内容进行〔结构化整合〕,探究开展学生核心素养的路径。重视数学结果的〔形成过程〕,处理好〔过程与结果〕的关系;重视数学内容的〔直观表述〕,处理好〔直观与抽象〕的关系;重视学生〔直接经验〕的形成,处理好〔直接经验与间接经验〕的关系。
4.课程内容呈现注重数学知识与方法的〔层次性〕和〔多样性〕,适当考虑〔跨学科主题〕学习;依据学生的年龄特征和认知规律,适当采取〔螺旋式〕的方法,适当表达选择性,逐渐拓展和加深课程内容,适应学生的开展需求。
5.有效的教学活动是〔学生学〕和〔教师教〕的统一,学生是学习的〔主体〕,教师是学习的〔组织者〕、〔引导者〕与〔合作者〕。
6.学生的学习应是一个〔主动〕的过程,〔认真听讲〕、〔思考〕、〔动手实践〕、〔自主探究〕、〔合作交流〕等是学习数学的重要方法。
7.教学活动应注重〔启发式〕,激发学生学习〔兴趣〕,引发学生积极〔思考〕,鼓舞学生〔质疑问难〕,引导学生在〔真实情境〕中〔觉察问题〕和〔提出问题〕,利用〔观察〕、〔猜测〕、〔实验〕、〔计算〕、〔推理〕、〔验证〕、〔数据分析〕、〔直观想象〕等方法分析问题和解决问题;
8.评价不仅要关注学生数学学习〔结果〕,还要关注学生数学学习〔过程〕,鼓舞学生〔学习〕,改进教师〔教学〕。
9.说说数学课程标准的五大理念是什么?
答:1.确立核心素养导向的课程目标;
2.设计表达结构化特征的课程内容;
3.实施促进学生开展的教学活动;
4.探究鼓舞学习和改进教学的评价;
5.促进信息技术与数学课程融合。
课程目标测试题
一、填空题:
1.在义务教育阶段,数学眼光主要表现为:(抽象能力)〔包含数感、量感、符号意识〕、(几何直观)、(空间观念)与(创新意识)。
2.通过对现实世界中根本(数量关系)与(空间形式)的观察,学生能够直观理解所学的(数学知识)及其(现实背景)。
3.在义务教育阶段,数学思维主要表现为:(运算能力)、(推理意识)或(推理能力)。
4.在义务教育阶段,数学言语主要表现为:(数据意识)或(数据观念)、(模型意识)或(模型观念)、(应用意识)。
5.核心素养具有〔整体性〕、〔一致性〕和〔阶段性〕,在不同阶段具有不同表现。小学阶段侧重对〔经验〕的〔感想〕,初中阶段侧重对〔概念〕的〔理解〕。
6.数感主要是指对于〔数与数量〕、〔数量关系〕及〔运算结果〕的直观感想。
7.量感主要是指对事物的〔可测量属性〕及〔大小关系〕的直观〔感知〕。
8.符号意识主要是指能够感想符号的〔数学功能〕。了解符号表达的〔现实意义〕;能够初步运用符号表示〔数量〕、〔关系〕和〔一般规律〕。
9.抽象能力主要是指通过对现实世界中〔数量关系〕与〔空间形式〕的抽象,得到数学的〔研究对象〕,形成〔数学概念〕、〔性质〕、〔法则〕和〔方法〕的能力。
10.运算能力主要是指依据〔法则〕和〔运算律〕进行正确运算的能力。
11.几何直观主要是指运用〔图表描述〕和〔分析问题〕的意识与习惯。
12.空间观念主要是指对〔空间物体〕或图形的形状〕、大小〕及〔位置关系〕的认识。
13.推理意识主要是指对〔逻辑推理过程〕及其〔意义〕的初步感想。
14.数据意识主要是指对〔数据的意义〕和〔随机性〕的感想。
15.模型意识主要是指对数学模型〔普适性〕的初步感想。
16.应用意识主要是指有意识地利用数学的〔概念〕、〔原理〕和〔方法〕解释现实世界中的〔现象〕与〔规律〕,解决现实世界中的问题。
17.创新意识主要是指主动尝试从〔一般生活〕、〔自然现象〕或〔科学情境〕中觉察和提出有意义的数学〔问题〕。
18.九年的学习时间划分为〔四个〕学段。其中,“六三〞学制〔1〜2年级〕为第—学段,〔3〜4年级〕为第二学段,〔5〜6年级〕为第三学段,〔7〜9年级〕为第四学段。
19.在第—学段〔1〜2年级〕经历简单的数的抽象过程,认识万以内的数,能进行简单的整数四则运算,形成初步的〔数感〕、〔符号意识〕和〔运算能力〕。
20.在第二学段〔3〜4年级〕认识自然数,经历小数和分数的形成过程,初步认识小数和分数;能进行较复杂的整数四则运算和简单的小数、分数的加减运算,理解运算律;形成〔数感〕、〔运算能力〕和初步的〔推理意识〕。
21.在第三学段〔5〜6年级〕经历用字母表示数的过程,认识自然数的一些特征,理解小数和分数的意义;能进行小数和分数的四则运算,探究数运算的一致性;形成〔符号意识〕、〔运算能力〕、〔推理意识〕。
22.尺规作图是指用〔无刻度直尺〕和〔圆规〕进行作图。
二、简答题:
1.核心素养的有哪三个方面〔简称“三会〞〕的构成?答:数学课程要培养的学生核心素养,主要包含以下三个方面:〔1〕会用数学的眼光观察现实世界。(2)会用数学的思维思考现实世界。(3)会用数学的言语表达现实世界。
2.在小学与初中阶段的主要表现有哪些?
答:小学阶段,核心素养主要表现为:数感、量感、符号意识、运算能力、几何直观、空间观念、推理意识、数据意识、模型意识、应用意识、创新意识。
3.数学课程的总目标是什么?答:通过义务教育阶段的数学学习,学生逐渐会用数学的眼光观察现实世界,会用数学的思维思考现实世界,会用数学的言语表达现实世界。学生能:
〔1〕获得适应未来生活和进一步开展所必需的数学根底知识、根本技能、根本思想、根本活动经验。〔“四基〞〕
〔2〕体会数学知识之间、数学与其他学科之间、数学与生活之间的联系,在探究真实情境所蕴含的关系中,觉察问题和提出问题,运用数学和其他学科的知识与方法分析问题和解决问题。〔“四能〞〕
〔3〕对数学具有好奇心和求知欲,了解数学的价值,欣赏数学美,提高学习数学的兴趣,建立学好数学的信心,养成良好的学习习惯,形成质疑问难、自我反思和勇于探究的科学精神。
课程内容测试题1
一、填空题:
1.义务教育阶段数学课程内容由〔数与代数〕、〔图形与几何〕、〔统计与概率〕、〔综合与实践〕四个学习领域组成。
2.综合与实践以〔跨学科主题〕学习为主,适当釆用〔主题式〕学习和〔工程式〕学习的方法,设计情境真实、较为复杂的问题,引导学生综合运用数学学科和跨学科的知识与方法解决问题。
3.综合与实践重在〔解决实际问题〕,以〔跨学科〕主题学习为主,主要包含〔主题活动〕和〔工程学习〕等。
4.综合与实践第—、第二、第三学段主要釆用〔主题式〕学习,将知识内容融入主题活动中;第四学段可釆用〔工程式〕学习。
5.每个领域的课程内容按〔内容要求〕、〔学业要求〕〔教学提示〕三个方面呈现。
6.内容要求主要描述学习的〔范围〕和〔要求〕;学业要求主要明确学段结束时〔学习内容〕与相关〔核心素养〕所要到达的〔程度〕;教学提示主要是针对学习内容和达成相关〔核心素养〕而提出的〔教学建议〕。
7.数与代数是义务教育阶段学生数学学习的重要领域,在小学阶段包含(数与运算)和(数量关系)两个主题。
8.“数与运算〞包含(整数)、(小数)和(分数)的认识及其(四则运算)。数是对数量的(抽象),数的运算重点在于理解(算理)、掌握(算法),数与运算之间有紧密的(关联)。
9.初步体会数是对数量的(抽象),感想(数的概念)本质上的(一致性),形成〔数感)和(符号意识);感想(数的运算)以及运算之间的关系,体会数的运算本质上的(一致性),形成(运算能力)和(推理意识)。
10.学生经历由(数量)到(数)的形成过程,理解和掌握数的(概念);经历(算理)和(算法)的(探究过程),理解(算理),掌握(算法)。
11.“数量关系〞主要是用(符号)〔包含数〕或(含有符号的式子)表达数量之间的(关系)或(规律)。
12.学生经历在具体情境中运用(数量关系)解决问题的过程,感想(加法模型)和(乘法模型)的意义,提高(觉察和提出问题)、(分析和解决问题)的能力,形成(模型意识)和初步的(应用意识)。
13.减法是(加法)的(逆运算)、乘法是(加法)的(简便运算)、除法是(乘法)的(逆运算)。
14.现实问题中的加法模型是表示(总量)等于(各重量)之和,乘法模型可大体分为与(个数)有关〔总价=单价×数量〕和与(物理量)有关〔路程=速度×时间〕的两种形式,感想模型中(量纲)的意义。
15.在认识整数的根底上,认识(小数)和(分数)。通过数的认识和数的运算有机结合,感想(计数单位)的意义,了解运算的(一致性)。
16.通过整数的运算,感想整数的性质;通过(整数)、(小数)、(分数)的运算,进一步感想(计数单位)在运算中的作用,感想运算的(一致性)。
17.数的运算教学应注重对(整数)、(小数)和分数)四则运算的统筹,让学生进一步感想运算的一致性。
18.理解(整数)、(分数)、(小数)的加减运算都要在(相同计数单位)下进行,感想加减运算的(一致性)。
19.理解用字母表示的(一般性),形成初步的(代数思维)。
二、问答题:
联系实际教学,在一二年级数学教学中你觉得应该如何进行数的认识教学?
答:应提供学生熟悉的情境,使学生感受具体情境中的数量,可以用对应的方法,借助小方块、圆片和小棒等表示相等的数量,然后过渡到用数字表达,使学生体会可以用一个数字符号表示同样的数量;了解不同数位上的数字表示不同的值。教学中应注意,10以内数的教学重点是使学生体验1〜9从数量到数的抽象过程,通过9 再加1就是十,体会十的表达与1〜9的不同是在新的位置上写1,这 个位置叫十位,十位上的1表示1个十,1个十用数字符号10表达。 同理认识百以内数、万以内数。
课程内容测试题2
一、填空题:
1.图形与几何是义务教育阶段学生数学学习的重要领域,在小学阶段包含〔图形的认识与测量〕和〔图形的位置与运动〕两个主题。学段之间的内容相互关联,〔螺旋上升〕,逐段递进。
2.“图形的认识与测量〞包含〔立体图形〕和〔平面图形的认识〕,〔线段长度的测量〕,以及图形的〔周长〕、〔面积〕和〔体积〕的计算。
3.图形的认识主要是对图形的〔抽象〕。学生经历从实际物体抽象出〔几何图形〕的过程。
4.图形的测量重点是确定图形的〔大小〕。学生经历〔统一度量〕单位的过程,感受〔统一度量〕单位的意义,基于〔度量单位〕理解图形长度、角度、周长、面积、体积。
5.在推导一些常见图形周长、面积、体积计算方法的过程中,感想数学〔度量方法〕,逐渐形成〔量感〕和〔推理意识〕。
6.图形的位置与运动包含确定〔点的位置〕,认识图形的〔平移〕、〔旋转〕、〔轴对称〕。
7.图形的测量教学要引导学生经历〔统一度量单位〕的过程,创设测量 课桌长度等生活情境,借助拃的长度、铅笔的长度等不同的方法测量,经历测量的过程,比较测量的结果,感受〔统一长度单位〕的意义。
8.会用(直尺)和(圆规)作一条线段等于(已知)线段,经历用(直尺)和(圆规)将三角形的(三条边)画到(一条直线)上的过程,直观感受三角形的(周长)。
9.图形的认识教学要援助学生建立几何图形的直观概念。通过观察长方体的(外表)认识面,通过(面的边缘)认识线段,感想图形(抽象)的过程。
10.在认识线段的根底上,引导学生用(直尺)和(圆规)作给(定线段)的(等长线段),感知线段长度与两点间距离的关系,增强(几何直观)。
11.图形的面积教学要让学生在熟悉的情境中,直观感知(面积的概念),经历选择面积单位进行(测量)的过程,理解(面积的意义),形成(量感)。
12.图形的周长教学可以借助用(直尺)和(圆规作图)的方法,引导学生自主探究三角形的(周长),感知线段长度的(可加性),理解三角形的(周长),归纳出长方形和正方形(周长)的计算公式。
13.图形的认识与测量的教学要引导学生通过对立体图形的测量,从〔度量〕的角度认识立体图形的特征;理解(长度)、(面积)、(体积)都是相应〔度量单位〕的累加。
14.引导学生运用(转化〕的思想,推导平行四边形、三角形、梯形、圆等平面图形的面积公式,形成(空间观念〕和(推理意识〕。
课程内容测试题3
一、填空题:
1.统计与概率是义务教育阶段数学学习的重要领域之一,在小学阶段包含〔数据分类〕、〔数据的搜集、整理与表达〕和〔随机现象发生的可能性〕三个主题。
2.数据分类的本质是依据〔信息〕对事物进行〔分类〕。学生经历从〔事物分类〕到〔数据分类〕的过程,感想如何依据事物的不同属性确定标准,依据标准区分事物,形成不同的类。
3.数据的搜集、整理与表达包含数据的〔搜集〕,用〔统计图表〕、〔平均数〕、〔百分数〕表达数据。
3.随机现象发生的可能性〞是通过〔试验〕、〔游戏〕等活动,让学生了解简单的随机现象,感受并〔定性描述〕随机现象发生可能性的大小,感想数据的〔随机性〕,形成〔数据意识〕。
4.条形统计图的主要功能是表达〔数量的多少〕,借助条形统计图可以直观(比较不同类别)事物的数量。折线统计图教学要引导学生理解折线统计图的主要功能是表达数据的〔变化趋势〕。
5.百分数教学要引导学生了解百分数是两个数量〔倍数关系〕的表达,既可以表达〔确定数据〕,也可以表达〔随机数据〕。
6.综合与实践主要包含〔主题活动〕和〔工程学习〕等。第—、第二、第三学段主要釆用〔主题式〕学习,第三学段可适当采纳〔工程式〕学习。
7.主题活动分为两类:第—类,融入〔数学知识〕学习的主题活动。主要涉及〔量〕、〔方向〕与〔位置〕、〔负数〕等知识的学习。第二类,运用数学知识及其〔他学科知识〕的主题活动。在这类活动中,学生将综合运用数学知识解决问题,体会数学知识的〔价值〕,以及数学与其他学科的〔关联〕。
8.第—学段综合与实践的主题活动,涉及“认识〔货币单位〕,认识〔时间单位时、分、秒〕,认识〔东、南、西、北〕四个方向〞等知识的学习, 关注幼小衔接,援助学生累积数学活动经验。
9.第二学段综合与实践的主题活动,涉及认识(年、月、日),认识常用的(质量单位),认识(方向)等数学知识的学习,在活动中综合运用数学和其他学科知识解决问题。
10.理解“曹冲称象〞的根本原理是〔等量的等量相等〕。
11.最初的度量方法都是借助一般用品,理解度量的本质就是(表达量的多少),了解计量单位是(人为规定)的。
12.第—学段的主题活动,侧重认识一般生活中最常见的量。第二学段的主题活动,不仅要让学生认识度、 量、衡等更为广泛的量。
13.主题活动的设计可以考虑问题引领的形式。“曹冲称象的故事〞可以从故事引入,引发学生的好奇心和探究的欲望,在理解〔质量单位〕的根底上,思考如何运用〔总量等于各重量之和〕称出一个庞然大物的质量,感知〔等量的等量相等〕这一根本领实,感想如何用数学的思维思考现实世界。
14.第三学段综合与实践包含〔主题活动〕和〔工程学习〕,涉及“了解负数〞等数学知识的学习,在活动中综合运用数学及其他学科知识解决问题,提高应用能力。
学业质量测试题
一、填空题:
1.学业质量是学生在完成课程阶段性学习后的〔学业成绩〕表现,反映〔核心素养〕要求。
2.学业质量标准是以〔核心素养〕为主要维度,结合课程内容,对学生学业成绩具体表现特征的〔整体刻画〕。
3.数学课程学业质量标准是〔学业水平考试〕命题及评价的依据,同时对学生的〔学习活动〕、〔教师的教学〕活动、教材的编写等具有重要的指导作用。
二、问答题:
数学课程学业质量标准主要从哪三个方面来评估学生核心素养达成及开展情况。
答:〔1〕以结构化数学知识主题为载体,在形成与开展“四基"的过程中所形成的抽象能力、推理能力、运算能力、几何直观和空间观念等。
〔2〕从学生熟悉的生活与社会情境,以及符合学生认知开展规律的数学与科技情境中,在经历“用数学的眼光觉察和提出问题,用数学的思维与数学的言语分析和解决问题"的过程中所形成的模型观念、数据观念、应用意识和创新意识等。
〔3〕学生经历数学的学习运用、实践探究活动的经验累积,逐渐产生对数学的好奇心、求知欲,以及对数学学习的兴趣和自信心,初步养成思考、探究质疑、合作交流等学习习惯,初步形成自我反思的意识。
课程实施测试题1
一、填空题:
1.教学目标实在定要充分考虑〔核心素养〕在数学教学中的达成。每一个特定的学习内容都具有培养相关核心素养的作用,要注重建立〔具体内容〕与〔核心素养〕主要表现的〔关联〕,在制订教学目标时将(核心素养)的主要表现表达在教学要求中。
2.在确定小学阶段“数与运算〞主题的教学目标时,关注学生(符号意识)、(数感)、(量感)、(运算能力)、〔推理意识〕等的形成;
3.〔核心素养〕导向的教学目标是对〔四基〕、〔四能〕教学目标的〔继承〕和〔开展〕。
4.〔四基〕、〔四能〕是开展学生〔核心素养〕的有效载体,〔核心素养〕对〔四基〕、〔四能〕教学目标提出了更高要求。
5.引导学生在〔觉察问题〕、〔提出问题〕的同时,会用〔数学的眼光〕观察现实世界;在〔分析问题〕的同时,会用〔数学的思维〕思考现实世界;在用数学方法〔解决问题)的过程中,会用(数学的言语)表达现实世界。6.(核心素养)是在长期的教学过程中逐渐形成的,核心素养在不同学段的主要表现表达了核心素养的(阶段性)和各阶段之间的(一致性)。
7.要依据核心素养的(内涵)和(不同学段)的主要表现,结合具体的教学内容,(全面分析)主题、(单元)和(课时)的特征,基于(主题)、(单元整体设计)教学目标,围绕(单元目标)细化(具体课时)的教学目标。
8.充分发挥(核心素养)导向的教学目标对教学过程的〔指导作用〕,在完成〔知识进阶〕的同时,表达〔核心素养〕的〔进阶〕。9.为完成〔核心素养〕导向的教学目标,不仅要〔整体把握〕教学内容之间的〔关联〕,还要把握教学内容〔主线)与(相应)核心素养开展之间的(关联)。10.教学内容是落实(教学目标)、开展学生(核心素养)的载体。
11.在教学中要重视对教学内容的(整体分析),援助学生建立能表达数学〔学科本质)、对未来学习有〔支撑意义)的〔结构化)的数学〔知识体系)。
12.一方面了解数学知识的〔产生)与〔来源)、〔结构)与〔关联)、〔价值)与〔意义),了解课程内容和教学内容的〔安排意图;另一方面强化对〔数学本质)的理解,关注〔数学概念的现实背景,引导学生从〔数学概念)、〔原理)及〔法则)之间的联系出发,建立起有意义的〔知识结构)。
13.通过适宜的(主题整合)教学内容,援助学生学会用(整体的)、〔联系的)、〔开展的眼光)看问题,形成科学的〔思维习惯),开展〔核心素养。
14.小学阶段“数与运算〞主题,在理解〔整数)、〔小数)、〔分数)意义的同时,理解〔整数)、〔小数)、〔分数)基于〔计数单位)表达的〔一致性)。
15.在教学过程中,不仅要注重(具体内容)与(核心素养)之间的(关联),还要注重(内容主线)与(核心素养)开展之间的(关联)。
16.在图形与几何领域的“图形的认识〞主线,第—学段,要求在对立体图形和平面图形的认识过程中,通过(直观识别)和(感知)形成初步的空间观念;第二学段,要求在对立体图形和平面图形关系的认识过程中,感想(图形的抽象),逐渐形成(空间观念)和初步的(几何直观);第三学段,在对图形测量和计算的过程中,从(度量)的角度加深对图形的认识,理解图形的(关系),进一步增强(空间观念)、(量感)和(几何直观);
17.改变单一讲授式教学方法,注重〔启发式〕、〔探究式〕、〔参与式〕、〔互动式〕等,探究〔大单元教学),积极开展(跨学科)的(主题式)学习和(工程式)学习等综合性教学活动。
18.依据不同的(学习任务)和(学习对象),选择适宜的(教学方法)或多种方法相结合,组织开展教学。通过丰富的教学方法,让学生在(实践)、(探究)、(体验〕、〔反思〕、〔合作〕、〔交流〕等学习过程中感想〔根本思想〕、〔累积根本活动经验〕,发挥每一种教学方法的育人价值,促进学生核心素养开展。
19.改变过于注重以〔课时〕为单位的教学设计,推进〔单元整体〕教学设计,表达〔数学知识〕之间的内在〔逻辑关系〕,以及〔学习内容〕与〔核心素养〕表现的〔关联〕。
20.单元整体教学设计要〔整体分析〕数学〔内容本质〕和学生(认知规律),合理(整合)教学内容,分析(主题)一(单元)一(课时)的(数学知识)和(核心素养)主要表现,确定单元教学目标,并落实到教学活动各个环节,(整体设计),(分步实施),促进学生对数学教学内容的(整体理解)与(把握),逐渐培养学生的(核心素养)。
21.注重发挥(情境设计)与(问题提出)对学生(主动参与)教学活动的(促进作用),使学生在活动中逐渐开展(核心素养)。
22.注重创设(真实情境)。(真实情境)创设可从(社会生活)、(科学)和(学生已有数学经验)等方面入手,围绕(教学任务),选择贴近(学生生活经验)、符合(学生年龄特点)和(认知加工特点)的素材.
23.重视设计(合理问题)。在(真实情境)中提出能引发学生思考的(数学问题),也可以引导学生提出(合理问题)。
24.问题提出应引发学生(认知冲突),激发学生(学习动机),促进学生(积极探究),让学生经历(数学观察)、(数学思考)、(数学表达)、(概括归纳)、(迁移运用)等学习过程,体会数学是(认识)、(理解)、(表达)真实世界的(工具)、(方法)和(言语),增强认识(真实世界)、解决(真实问题)的能力,树立学好数学的(自信心),养成良好的(学习习惯)。
25.注重情境素材的〔育人功能),如表达中国数学家奉献的素材,援助学生了解和领悟中华民族独特的数学智慧,增强文化自信和民族自豪感。
26.注重情境的(多样化),让学生感受数学在现实世界的广泛应用,体会数学的价值。
27.综合与实践领域的教学活动,以解决〔实际问题〕为重点,以〔跨学科〕主题学习为主,以〔真实问题〕为载体,适当釆取〔主题活动〕或〔工程学习〕的方法呈现,通过综合运用数学和〔其他学科〕的知识与方法解决〔真实问题〕,着力培养学生的〔创新意识)、(实践能力)、(社会担当)等综合品质。28.主题活动教学是〔跨学科〕背景下的数学内容学习,其目标是引导学生在〔跨学科〕背景下用〔数学的眼光〕观察现实世界,用〔数学的言语〕表达现实世界中事物的〔概念〕、〔关系)和(规律),援助学生感想(数学与现实世界)的联系,培养学生(实践精神)。
29.(工程学习)教学以用(数学方法)解决现实问题为主,其目标是引导学生觉察解决(现实问题)的关键要素,用(数学的思维)分析要素之间的关系并觉察规律,培养(模型观念),经历(觉察)、(提出)、(分析)、(解决问题)的过程,培养(应用意识)和(创新意识)。30.(主题活动)教学要设计出(完整可行)的活动方案,可以利用(信息技术)或(制作教具)的形式,展示(跨学科)主题的背景;参考学生(个人经验)和(已有知识〕累积,从〔解决问题〕需要出发,明确所学数学知识与技能,提出相应学习任务,确定学习活动形式,明确学习成果的形式和要求等。
二、问答题:
说说新课程标准对我们的教学提出了哪些建议?
1.制订指向核心素养的教学目标。〔1〕教学目标要表达核心素养的主要表现〔2〕处理好核心素养与“四基〞“四能〞的关系〔3〕教学目标的设定要表达整体性和阶段性2.整体把握教学内容。〔1〕注重教学内容的结构化〔2〕注重教学内容与核心素养的关联
2.选择能引发学生思考的教学方法。〔1〕丰富教学方法:注重启发式、探究式、参与式、互动式。〔2〕重视单元整体教学设计〔3〕强化情境设计与问题提出:注重创设真实情境。重视设计合理问题。4.进一步强化综合与实践。〔1〕明确教学目标〔2〕设计教学活动〔3〕关注教学评价5.注重信息技术与数学教学的融合〔1〕改进教学方法。〔2〕促进自主学习。
课程实施测试题2
一、填空题:
1.发挥评价的〔育人导向〕作用,坚持〔以评促学〕、〔以评促教〕。主要分为〔教学评价〕和〔学业水平考试〕。2.教学评价方法应包含〔书面测验〕、〔口头测验〕、〔活动汇报〕、〔课堂观察〕、〔课后访谈〕、〔课内外作业〕、〔成长记录〕等,可以采纳〔线上线下〕相结合的方法。
3.评价维度多元是指在评价过程中,在关注〔四基)、〔四能〕达成的同时,特别关注〔核心素养〕的相应表现。
4.评价主体应包含〔教师〕、〔学生〕、〔家长〕等。
5.评价结果的呈现应采纳〔定性〕与〔定量〕相结合的方法。
6.第—学段的评价应以〔定性的描述性〕评价方法为主,第二、第三学段可以釆用〔描述性评价〕和〔等级评价〕相结合的方法,第四学段可以釆用〔等级评价〕和〔分数制评价〕相结合的方法。
7.学业水平考试由〔省级教育行政部门〕组织实施,依据〔学业质量标准〕,对学生学完本课程后〔课程目标〕达成度进行〔终结性评价〕。
8.考试成绩是学生〔毕业〕和〔高一级〕学校招生录取的〔重要依据〕,为〔评价地域〕和学校教学质量〕、〔改进教学〕提供重要参考。
9.以〔核心素养〕为导向的考试命题,要关注〔数学的本质〕,关注〔通性通法〕,综合考查〔四基〕、〔四能〕与〔核心素养〕。
二、问答题:
1.学业水平考试的命题原则是什么?
答:坚持素养立意,凸显育人导向。
遵循课标要求,严格依标命题。
标准命题治理,强化质量监测。
2.学业水平考试的的性质和目的是什么?
答:学业水平考试由省级教育行政部门组织实施,依据学业质量标准,对学生学完本课程后课程目标达成度进行终结性评价。考试成绩是学生毕业和高一级学校招生录取的重要依据,为评价地域和学校教学质量、改进教学提供重要参考。
3.如何做好命题的规划?
答:〔1〕考试形式以纸笔测试为主,可釆用基于信息技术的考试方法,并与过程性评价、表现性评价等多样化的评价方法相结合。纸笔测试应合理规划题目类型,关注客观题与主观题分值所占比例,原则上客观题分值要低于主观题分值;主观题要探究命制问题解决及多学科融合类试题;卷子呈现预防套路化。
〔2〕合理确定卷子容量。适当精减题量,要着重减少单纯考查技能熟练性的题目,保证学生有充分的作答时间。
〔3〕科学制订细目表。在内容要求、素养表现的根底上,确定题型题量、难易程度、分值比例等。细目表的编制具体翔实,指向明确,便于命题操作,关注卷子难度、合格率、区分度等指标。
4.如何进行试题的命制?
答:强化命题的标准化建设,逐渐完成题库建设,完成命题流程的标准化,建立试题质量监测与评估体系。〔1〕明确考查意图。依据学业质量标准要求,明确卷子和每道试题所要考查的数学知识和核心素养的相应表现。〔2〕创设合理情境。依据考查意图,结合学生认知水平和生活经验,设计合理的生活情境、数学情境、科学情境,关注情境的真实性,适当引入数学文化。〔3〕设置合理问题。问题的设置要有利于考查对数学概念、性质、关系、规律的理解、表达和应用,注重考查学生的思维过程,预防死记硬背、机械刷题。〔4〕科学制定评分标准。评分标准应具有科学性、可操作性。对放开性、综合性较强的试题,合理设计多层次任务的评分标准。
课程实施测试题3
一、填空题:
1.数学教材为学生的数学学习活动提供了〔学习主题〕、〔知识结构〕和(根本线索),是完成数学(课程目标)、实施数学教学的重要资源。
2.小学阶段数与代数领域将〔数的认识〕、〔数的运算〕合并为〔数与运算〕,旨在使学生〔整体理解〕数与数的运算,在形成〔符号意识〕的同时,开展〔运算能力〕。
3.开展〔三会〕是〔不同学段〕核心素养培养的〔一致性〕要求。内容组织不仅要关注数学内容的〔主线〕,也要关注核心素养培养的〔一致性〕。
4.〔数学抽象〕贯穿于整个义务教育阶段,其开展的〔一致性〕表达在让学生经历由〔直观到抽象〕的过程。
5.核心素养是逐渐形成的,〔不同阶段〕具有〔不同〕表现水平。教材编写应关注核心素养开展的〔阶段性),准确把握(每个学段)、(每个主题)的内容要求和学业要求。
6.教材内容要遵循〔螺旋上升〕原则,使学生对数学知识的理解〔不断深刻〕,使教材表达核心素养开展的〔阶段性〕。
7.教材正文的呈现应有利于教师引导学生〔主动学习〕。新知识的学习,展现〔知识背景〕一〔知识形成〕一〔揭示联系〕的过程。
8.运用数学知识解决问题,适当表达〔问题情境〕一〔建立模型〕一〔求解验证〕的过程,以利于教师在教学过程中援助学生有效地理解〔知识与方法〕、〔累积活动经验〕、提高〔四能〕,开展〔素养导向〕的教学。
9.教材应为学生提供丰富的〔问题情境〕、充分的(思考空间),让学生经历〔观察〕、〔实验〕、〔猜测〕、〔推理〕、〔交流〕、〔反思〕等数学活动过程,援助学生感想(根本思想),累积〔根本活动经验)。
10.教材应具备(可读性),〔图文并茂〕,关注学生身边发生的事情,增加学习的〔趣味性〕,激发学生内在〔学习动机〕,促进学生〔主动学习〕。
11.习题的设计要关注〔数学的本质〕,关注〔通性通法〕。设计丰富多样的习题,满足〔稳固〕、〔复习〕、〔应用〕、〔拓展〕的学习需要。
12.教材素材的选取应尽可能地贴近〔学生的现实〕,以利于学生经历从〔现实情境〕中抽象出数学〔知识与方法)的过程,开展(抽象能力)、(推理能力)等。
13.学生的现实主要包含以下三个方面:(生活现实),(数学现实),(其他学科现实)。
二、问答题:
1.在教材编写建议中如何表达核心素养培养要求?
答:〔1〕教材内容结构要着重关注核心素养的整体性
〔2〕教材内容组织要着重关注核心素养开展的一致性
〔3〕教材内容要求要着重关注核心素养开展的阶段性
2.在教学中如何做到有利于学生的思考?
答:(1)注重来龙去脉,有利教师引导
(2)激发学生兴趣,引导学生探究
(3)优化习题设计,注重开展素养
3.教学中选取的素材要贴近学生的现实,学生的现实有哪些方面?
答:学生的现实主要包含以下三个方面:生活现实,即学生熟悉的事物,以及自然、社会中的现象和问题。数学现实,即学生已经累积的数学知识。例如,学生学习分数时已经具备的整数知识,学习因式分解时已经具备的整数分解知识。其他学科现实,即学生学习数学知识 时在各学段已经具备的其他学科知识。
三、论述题:
说一说在教材编写上的建议。
答:表达核心素养培养要求
〔1〕教材内容结构要着重关注核心素养的整体性
〔2〕教材内容组织要着重关注核心素养开展的一致性
〔3〕教材内容要求要着重关注核心素养开展的阶段性
有利于引发学生思考
(1)注重来龙去脉,有利教师引导
(2)激发学生兴趣,引导学生探究
(3)优化习题设计,注重开展素养
素材选取要贴近学生的现实、真实可信
学生的现实主要包含以下三个方面生活现实,数学现实,其他学科现实。
注重教材创新
(1)科学论证、(2)拓展视野、(3)强化功能
课程实施测试题4
一、填空题:
1.资源开发与利用要坚持〔育人为本〕,将促进学生〔身心健康〕开展作为〔首要任务〕,从促进学生〔核心素养〕形成和开展的〔内在规律〕出发,为〔教与学〕提供有效支撑。
2.教学研究对于课程标准的有效实施具有不可或缺的作用。应注重〔地域教研〕和〔校本教研〕协同,整合各类资源,创新教研机制,高水平开展研究、指导和效劳工作。
3.树立〔研究意识〕,围绕课程实施中的〔重点难点〕问题,如〔单元整体教学〕设计、〔跨学科主题〕学习等,以〔主题教研〕的形式开展系统深刻的研究,援助教师提升课程实施水平。
4.倡导〔参与式〕、〔体验式〕、〔研究式〕教研方法,利用现代信息技术提升教师参与的效果。
5.依据教师学习特点,强化基于〔教学现场〕、走进〔真实课堂〕、解决教学〔实际问题〕的教学研究,利用〔行动研究〕和〔反思实践〕提升教学能力。
6.探究〔信息技术〕支持下的教研方法改革,注重开展〔智慧教研〕和〔跨地域〕教研,促进〔教研资源〕和〔教研智慧〕的分享、〔协同建构〕与优化。
7.建强学校教研组、备课组,构建校级常态〔教研共同体〕,形成〔时间固定〕、〔主题聚焦〕、〔人人参与〕、〔研讨交流〕的教研机制,及时解决教师在教学实践中遇到的问题。
8.基于本校学情,聚焦教学重点和难点问题,确定〔教研专题〕,以〔教学改进〕和〔师生共同开展)为研究目的,开展(校本教研)活动,增强教研的(针对性),引导教师连续进行(核心素养)导向的数学教学改进,完成教师从(理念到课堂教学行为)的转变。
9.在(集体备课)、(课堂观摩)、(交流研讨)等教研活动根底上,积极开展(问题)一(研究)一(改进)一(实践)的校本教研,援助教师解决教学中的问题。
10.教师培训是落实课程改革要求、提升(育人质量)的关键。培训应面向全体教师,坚持(先培训后实施)。
11.注重〔研究型〕、〔参与式〕教师培训,釆用〔专家汇报〕与〔案例研究〕相结合、〔线上与线下〕相结合、〔集体学习〕与〔自我研修〕相结合等多种方法。
二、简答题:
1.在进行课程资源开发与利用需要注意什么?
答:资源开发要丰富多样、资源开发要注重样板化、注重保护知识产权
2.说一说在教学研究有什么的建议?
答:1.教学研究建议
(1)地域教研建议
重视顶层设计。聚焦关键问题。优化教研方法。
(2)校本教研建议
强化组织建设。聚焦教学难点。创新教研方法。
3.在课程标准教师培训方面,说说你的建议。
精心设计培训内容。培训内容的设计应着眼新理念,强化整体性,突出关键点,注重实践性。内容应包含:课程改革的背景和要求,课程改革的顶层设计意图和数学课程的理念等;数学课程性质、 课程理念、核心素养、课程目标、课程内容、学业质量、教学与评价建议等各局部的核心要义及彼此间的关系;整体把握结构化课程内容 体系、单元整体教学、跨学科主题学习、基于核心素养的学业质量标准与考试评价等关键问题专题研修;结合典型案例对数学教学中重点难点解析,教学实施路径和策略示范引领等。
釆用多样化培训方法。注重研究型、参与式培训,釆用专家汇报 与案例研究相结合、线上与线下相结合、集体学习与自我研修相结合等多种方法。探究新技术与教师培训有机融合的培训模式,运用移动互联网、人工智能、大数据等新技术,创新移动学习环境,充分发挥现代信息技术对教师培训的支持和效劳功能。例如:课程标准解读可釆取专家现场讲座、线上视频学习的方法;案例示范可釆取工作坊方法,设置“案例分享一分组研讨一专家点评〞等活动环节。