最新文章专题视频专题问答1问答10问答100问答1000问答2000关键字专题1关键字专题50关键字专题500关键字专题1500TAG最新视频文章推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37视频文章20视频文章30视频文章40视频文章50视频文章60 视频文章70视频文章80视频文章90视频文章100视频文章120视频文章140 视频2关键字专题关键字专题tag2tag3文章专题文章专题2文章索引1文章索引2文章索引3文章索引4文章索引5123456789101112131415文章专题3
当前位置: 首页 - 正文

基于遗传算法的BP神经网络MATLAB代码

来源:动视网 责编:小OO 时间:2025-09-30 08:35:25
文档

基于遗传算法的BP神经网络MATLAB代码

用遗传算法优化BP神经网络的Matlab编程实例(转)由于BP网络的权值优化是一个无约束优化问题,而且权值要采用实数编码,所以直接利用Matlab遗传算法工具箱。以下贴出的代码是为一个19输入变量,1个输出变量情况下的非线性回归而设计的,如果要应用于其它情况,只需改动编解码函数即可。程序一:GA训练BP权值的主函数functionnet=GABPNET(XX,YY)%----------------------------------------------------------------
推荐度:
导读用遗传算法优化BP神经网络的Matlab编程实例(转)由于BP网络的权值优化是一个无约束优化问题,而且权值要采用实数编码,所以直接利用Matlab遗传算法工具箱。以下贴出的代码是为一个19输入变量,1个输出变量情况下的非线性回归而设计的,如果要应用于其它情况,只需改动编解码函数即可。程序一:GA训练BP权值的主函数functionnet=GABPNET(XX,YY)%----------------------------------------------------------------
用遗传算法优化BP神经网络的Matlab编程实例(转)

由于BP网络的权值优化是一个无约束优化问题,而且权值要采用实数编码,所以直接利用Matlab遗传算法工具箱。以下贴出的代码是为一个19输入变量,1个输出变量情况下的非线性回归而设计的,如果要应用于其它情况,只需改动编解码函数即可。 

程序一:GA训练BP权值的主函数

function net=GABPNET(XX,YY)

%--------------------------------------------------------------------------

%  GABPNET.m

%  使用遗传算法对BP网络权值阈值进行优化,再用BP算法训练网络

%--------------------------------------------------------------------------

%数据归一化预处理

nntwarn off

XX=[1:19;2:20;3:21;4:22]';

YY=[1:4];

XX=premnmx(XX);

YY=premnmx(YY);

YY

%创建网络

net=newff(minmax(XX),[19,25,1],{'tansig','tansig','purelin'},'trainlm');

%下面使用遗传算法对网络进行优化

P=XX;

T=YY;

R=size(P,1);

S2=size(T,1);

S1=25;%隐含层节点数

S=R*S1+S1*S2+S1+S2;%遗传算法编码长度

aa=ones(S,1)*[-1,1];

popu=50;%种群规模

save data2 XX YY % 是将 xx,yy 二个变数的数值存入 data2 这个MAT-file,

initPpp=initializega(popu,aa,'gabpEval');%初始化种群

gen=100;%遗传代数

%下面调用gaot工具箱,其中目标函数定义为gabpEval

[x,endPop,bPop,trace]=ga(aa,'gabpEval',[],initPpp,[1e-6 1 1],'maxGenTerm',gen,...

  'normGeomSelect',[0.09],['arithXover'],[2],'nonUnifMutation',[2 gen 3]);

%绘收敛曲线图

figure(1)

plot(trace(:,1),1./trace(:,3),'r-');

hold on

plot(trace(:,1),1./trace(:,2),'b-');

xlabel('Generation');

ylabel('Sum-Squared Error');

figure(2)

plot(trace(:,1),trace(:,3),'r-');

hold on

plot(trace(:,1),trace(:,2),'b-');

xlabel('Generation');

ylabel('Fittness');

%下面将初步得到的权值矩阵赋给尚未开始训练的BP网络

[W1,B1,W2,B2,P,T,A1,A2,SE,val]=gadecod(x);

net.LW{2,1}=W1;

net.LW{3,2}=W2;

net.b{2,1}=B1;

net.b{3,1}=B2;

XX=P;

YY=T;

%设置训练参数

net.trainParam.show=1;

net.trainParam.lr=1;

net.trainParam.epochs=50;

net.trainParam.goal=0.001;

%训练网络

net=train(net,XX,YY);

程序二:适应值函数

function [sol, val] = gabpEval(sol,options)

% val - the fittness of this individual

% sol - the individual, returned to allow for Lamarckian evolution

% options - [current_generation]

load data2

nntwarn off

XX=premnmx(XX);

YY=premnmx(YY);

P=XX;

T=YY;

R=size(P,1);

S2=size(T,1);

S1=25;%隐含层节点数

S=R*S1+S1*S2+S1+S2;%遗传算法编码长度

for i=1:S,

   x(i)=sol(i);

end;

[W1, B1, W2, B2, P, T, A1, A2, SE, val]=gadecod(x);

程序三:编解码函数

function [W1, B1, W2, B2, P, T, A1, A2, SE, val]=gadecod(x)

load data2

nntwarn off

XX=premnmx(XX);

YY=premnmx(YY);

P=XX;

T=YY;

R=size(P,1);

S2=size(T,1);

S1=25;%隐含层节点数

S=R*S1+S1*S2+S1+S2;%遗传算法编码长度

% 前R*S1个编码为W1

for i=1:S1,

    for k=1:R,

      W1(i,k)=x(R*(i-1)+k);

    end

end

% 接着的S1*S2个编码(即第R*S1个后的编码)为W2

for i=1:S2,

   for k=1:S1,

      W2(i,k)=x(S1*(i-1)+k+R*S1);

   end

end

% 接着的S1个编码(即第R*S1+S1*S2个后的编码)为B1

for i=1:S1,

   B1(i,1)=x((R*S1+S1*S2)+i);

end

% 接着的S2个编码(即第R*S1+S1*S2+S1个后的编码)为B2

for i=1:S2,

   B2(i,1)=x((R*S1+S1*S2+S1)+i);

end

% 计算S1与S2层的输出

A1=tansig(W1*P,B1);

A2=purelin(W2*A1,B2);

% 计算误差平方和

SE=sumsqr(T-A2);

val=1/SE; % 遗传算法的适应值

想运行程序,直接在代码窗口输入GABPNET即可。

对了,运行程序时需要调用gaot工具箱,没有装一个就行了。

文档

基于遗传算法的BP神经网络MATLAB代码

用遗传算法优化BP神经网络的Matlab编程实例(转)由于BP网络的权值优化是一个无约束优化问题,而且权值要采用实数编码,所以直接利用Matlab遗传算法工具箱。以下贴出的代码是为一个19输入变量,1个输出变量情况下的非线性回归而设计的,如果要应用于其它情况,只需改动编解码函数即可。程序一:GA训练BP权值的主函数functionnet=GABPNET(XX,YY)%----------------------------------------------------------------
推荐度:
  • 热门焦点

最新推荐

猜你喜欢

热门推荐

专题
Top