最新文章专题视频专题问答1问答10问答100问答1000问答2000关键字专题1关键字专题50关键字专题500关键字专题1500TAG最新视频文章推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37视频文章20视频文章30视频文章40视频文章50视频文章60 视频文章70视频文章80视频文章90视频文章100视频文章120视频文章140 视频2关键字专题关键字专题tag2tag3文章专题文章专题2文章索引1文章索引2文章索引3文章索引4文章索引5123456789101112131415文章专题3
当前位置: 首页 - 正文

(完整版)直线中的几类对称问题(推荐)

来源:动视网 责编:小OO 时间:2025-09-22 22:58:38
文档

(完整版)直线中的几类对称问题(推荐)

直线中的几类对称问题对称问题,是解析几何中比较典型,高考中常考的热点问题.对于直线中的对称问题,我们可以分为:点关于点的对称;点关于直线的对称;直线关于点的对称,直线关于直线的对称.本文通过几道典型例题,来介绍这几类对称问题的求解策略.一、点关于点的对称问题点关于点的对称问题,是对称问题中最基础最重要的一类,其余几类对称问题均可以化归为点关于点的对称进行求解.熟练掌握和灵活运用中点坐标公式是处理这类问题的关键.例1求点A(2,4)关于点B(3,5)对称的点C的坐标.分析易知B是线段AC的中点,
推荐度:
导读直线中的几类对称问题对称问题,是解析几何中比较典型,高考中常考的热点问题.对于直线中的对称问题,我们可以分为:点关于点的对称;点关于直线的对称;直线关于点的对称,直线关于直线的对称.本文通过几道典型例题,来介绍这几类对称问题的求解策略.一、点关于点的对称问题点关于点的对称问题,是对称问题中最基础最重要的一类,其余几类对称问题均可以化归为点关于点的对称进行求解.熟练掌握和灵活运用中点坐标公式是处理这类问题的关键.例1求点A(2,4)关于点B(3,5)对称的点C的坐标.分析易知B是线段AC的中点,
直线中的几类对称问题

对称问题,是解析几何中比较典型,高考中常考的热点问题. 对于直线中的对称问题,我们可以分为:点关于点的对称;点关于直线的对称;直线关于点的对称,直线关于直线的对称. 本文通过几道典型例题,来介绍这几类对称问题的求解策略.

一、点关于点的对称问题

点关于点的对称问题,是对称问题中最基础最重要的一类,其余几类对称问题均可以化归为点关于点的对称进行求解. 熟练掌握和灵活运用中点坐标公式是处理这类问题的关键.

例1 求点A(2,4)关于点B(3,5)对称的点C的坐标.

分析 易知B是线段AC的中点,由此我们可以由中点坐标公式,构造方程求解.

解 由题意知,B是线段AC的中点,设点C(x,y),由中点坐标公式有,解得,故C(4,6).

点评 解决点关于点的对称问题,我们借助中点坐标公式进行求解. 另外此题有可以利用中点的性质AB=BC,以及A,B,C三点共线的性质去列方程来求解.

二、点关于直线的对称问题

点关于直线的对称问题是点关于点的对称问题的延伸,处理这类问题主要抓住两个方面:①两点连线与已知直线斜率乘积等于-1,②两点的中点在已知直线上.

例2 求点A(1,3)关于直线l:x+2y-3=0的对称点A′的坐标.

分析 因为A,A′关于直线对称,所以直线l是线段AA′的垂直平分线. 这就找到了解题的突破口.

解 据分析,直线l与直线AA′垂直,并且平分线段AA′,设A′的坐标为(x,y),则AA′的中点B的坐标为

由题意可知,,

解得. 故所求点A′的坐标为

三、直线关于某点对称的问题

直线关于点的对称问题,可转化为直线上的点关于某点对称的问题,这里需要注意到的是两对称直线是平行的. 我们往往利用平行直线系去求解.

例3 求直线2x+11y+16=0关于点P(0,1)对称的直线方程.

分析 本题可以利用两直线平行,以及点P到两直线的距离相等求解,也可以先在已知直线上取一点,再求该点关于点P的对称点,代入对称直线方程待定相关常数.

解法一 由中心对称性质知,所求对称直线与已知直线平行,故可设对称直线方程为2x+11y+c=0. 由点到直线距离公式,得,

即|11+c|=27,得c=16(即为已知直线,舍去)或c= -38. 故所求对称直线方程为2x+11y-38=0.

解法二 在直线2x+11y+16=0上取两点A(-8,0),则点A(-8,0)关于P(0,1)的对称点的B(8,2). 由中心对称性质知,所求对称直线与已知直线平行,故可设对称直线方程为2x+11y+c=0.

将B(8,2)代入,解得c=-38.

故所求对称直线方程为2x+11y-38=0.

点评 解法一利用所求的对称直线肯定与已知直线平行,再由点(对称中心)到此两直线距离相等,而求出c,使问题解决,而解法二是转化为点关于点对称问题,利用中点坐标公式,求出对称点坐标,再利用直线系方程,写出直线方程. 本题两种解法都体现了直线系方程的优越性.

四、直线关于直线的对称问题

直线关于直线对称问题,包含有两种情形:①两直线平行,②两直线相交. 对于①,我们可转化为点关于直线的对称问题去求解;对于②,其一般解法为先求交点,再用“到角”,或是转化为点关于直线对称问题.

例4 求直线l1:x-y-1=0关于直线l2:x-y+1=0对称的直线l的方程.

分析 由题意,所给的两直线l1,l2为平行直线,求解这类对称总是,我们可以转化为点关于直线的对称问题,再利用平行直线系去求解,或者利用距离相等寻求解答.

解 根据分析,可设直线l的方程为x-y+c=0,在直线l1:x-y-1=0上取点M(1,0),则易求得M关于直线l2:x-y+1=0的对称点N(-1,2),

将N的坐标代入方程x-y+c=0,解得c=3,

故所求直线l的方程为x-y+3=0.

点评 将对称问题进行转化,是我们求解这类问题的一种必不可少的思路. 另外此题也可以先利用平行直线系方程写出直线l的形式,然后再在直线l2上的任取一点,在根据该点到互相对称的两直线的距离相等去待定相关常数.

例5 试求直线l1:x-y-2=0关于直线l2:3x-y+3=0对称的直线l的方程.

分析 两直线相交,可先求其交点,再利用到角公式求直线斜率.

解 由解得l1,l2的交点,

设所求直线l的斜率为k,

由到角公式得,,所以k=-7.

由点斜式,得直线l的方程为7x+y+22=0.

点评 本题亦可以先求l1,l2的交点A,再在直线l1上取异于点A的任意点B,再求点B关于点A的对称点B′,最后由A,B′两点写出直线l的方程.

总结:(1)一般的,求与直线ax+by+c=0关于x=a0对称的直线方程,先写成a(x-a0)+by+c+aa0=0的形式,再写成a(a0-x)+by+c+aa0=0形式,化简后即是所求值.

(2)一般的,求与直线ax+by+c=0关于y=b0对称的直线方程,先写成ax+b(y-b0)+c+bb0=0的形式,再写ax+b(b0-y)+c+bb0=0成形式,化简后即是的求值.

(3)一般的,求与直线ax+by+c=0关于原点对称的直线方程,只需把x换成-x,把y换成-y,化简后即为所求.

(4)一般地直(曲)线f(x,y)=0关于直线y=x+c的对称直(曲)线为f(y-c,x+c)=0. 即把f(x,y)=0中的x换成y-c、y换成x+c即可.

(5)一般地直(曲)线f(x,y)=0关于直线y= -x+c的对称直(曲)线为f(-y+c,-x+c). 即把f(x,y)=0中的x换成-y+c,y换成-x+c.

练习:1求点A(-3,6)关于点B(2,3)对称的点C的坐标.

                      C(7,0)

已知点A(5,8),B(4,1),试求A点关于B点的对称点C的坐标. 

C (3,-6)

2若直线:3x-y-4=0关于点P(2,-1)对称的直线方程.求的方程

 :3x-y-10=0

3求A(4,0)关于直线5x+4y+21=0的对称点是______.

解:设A(4,0)关于直线5x+4y+21=0的对称点为A′(x1,y1)

解得:

∴A′(-6,-8)

∴A(4,0)关于直线5x+4y+21=0的对称点为(-6,-8)

4

5求直线m:  x-y-2=0关于直线l:   3x-y+3=0对称的直线n的方程.

7x+2y+22=0

文档

(完整版)直线中的几类对称问题(推荐)

直线中的几类对称问题对称问题,是解析几何中比较典型,高考中常考的热点问题.对于直线中的对称问题,我们可以分为:点关于点的对称;点关于直线的对称;直线关于点的对称,直线关于直线的对称.本文通过几道典型例题,来介绍这几类对称问题的求解策略.一、点关于点的对称问题点关于点的对称问题,是对称问题中最基础最重要的一类,其余几类对称问题均可以化归为点关于点的对称进行求解.熟练掌握和灵活运用中点坐标公式是处理这类问题的关键.例1求点A(2,4)关于点B(3,5)对称的点C的坐标.分析易知B是线段AC的中点,
推荐度:
  • 热门焦点

最新推荐

猜你喜欢

热门推荐

专题
Top