
理 科 数 学
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.
A. B. C. D.
2.设集合,.若,则
A. B. C. D.
3.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯
A.1盏 B.3盏 C.5盏 D.9盏
4.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为
A. B. C. D.
5.设满足约束条件 则的最小值是
A. B. C. D.
6.安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有
A.12种 B.18种 C.24种 D.36种
7.甲、乙、丙、丁四位同学一起去向老师询问成语竞猜的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则
A.乙可以知道四人的成绩 B.丁可以知道四人的成绩
C.乙、丁可以知道对方的成绩 D.乙、丁可以知道自己的成绩
8.执行右面的程序框图,如果输入的,则输出的
A.2
B.3
C.4
D.5
9.若双曲线的一条渐近线被圆所截得的弦长为,则的离心率为
A. B. C. D.
10.已知直三棱柱中,, , , 则异面直线与所成角的余弦值为
A. B. C. D.
11.若是函数的极值点,则的极小值为
A. B. C. D.
12.已知是边长为的等边三角形,为平面内一点,则的最小值是
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分.
13.一批产品的二等品率为,从这批产品中每次随机取一件,有放回地抽取次,表示抽到二等品件数,则 .
14.函数的最大值是 .
15.等差数列的前项和为,,,则 .
16.已知是抛物线的焦点,是上一点,的延长线交轴于点.若为的中点,则 .
三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22/23题为选考题,考生根据要求作答.
(一)必考题:共60分.
17.(12分)
的内角的对边分别为,已知.
(1)求;
(2)若,的面积为,求.
18.(12分)
海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如下:
(1)设两种养殖方法的箱产量相互,记表示事件“旧养殖法的箱产量低于50kg,新养殖法的箱产量不低于50kg”,估计的概率;
(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关;
| 箱产量<50kg | 箱产量≥50kg | |
| 旧养殖法 | ||
| 新养殖法 |
附:
19.(12分)
如图,四棱锥中,侧面为等边三角形且垂直于地面,,,是的中点.
(1)证明:直线;
(2)点在棱上,且直线与底面所成角为, 求二面角的余弦值.
20.(12分)
设为坐标原点,动点在椭圆上,过作轴的垂线,垂足为,点满足.
(1)求点的轨迹方程;
(2)设点在直线上,且. 证明:过点且垂直于的直线过的左焦点.
21.(12分)
已知函数,且.
(1)求;
(2)证明:存在唯一的极大值点,且.
(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.
22.[选修:坐标系与参数方程](10分)
在直角坐标系中,以坐标原点为极点,正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)为曲线上的动点,点在线段上,且满足,求点的轨迹的直角坐标方程;
(2)设点的极坐标为,点在曲线上,求面积的最大值.
23.[选修:不等式选讲](10分)
已知.证明:
(1);
(2).
2017年普通高等学校招生全国统一考试
理 科 数 学 参 考 答 案
1.解:===2﹣i,故选 D.
2.解:由得,即是方程的根,所以,,故选C.
3. 解:设这个塔顶层有a盏灯,
∵宝塔一共有七层,每层悬挂的红灯数是上一层的2倍,
∴从塔顶层依次向下每层灯数是以2为公比、a为首项的等比数列,
又总共有灯381盏,∴381= =127a,解得a=3,
则这个塔顶层有3盏灯,故选B.
4.解:由题意,该几何体是一个组合体,下半部分是一个底面半径为3,高为4的圆柱,其体积,上半部分是一个底面半径为3,高为6的圆柱的一半,其体积,故该组合体的体积.故选B.
5.解:x、y满足约束条件的可行域如图:
z=2x+y 经过可行域的A时,目标函数取得最小值,
由解得A(﹣6,﹣3),
则z=2x+y 的最小值是:﹣15.故选:A.
6.解:由题意可得,一人完成两项工作,其余两人每人完成一项工作,据此可得,只要把工作分成三份:有种方法,然后进行全排列,由乘法原理,不同的安排方式共有种. 故选D.
7.解:四人所知只有自己看到,老师所说及最后甲说话,
甲不知自己的成绩
→乙丙必有一优一良,(若为两优,甲会知道自己的成绩;若是两良,甲也会知道自己的成绩)
→乙看到了丙的成绩,知自己的成绩
→丁看到甲、丁中也为一优一良,丁知自己的成绩,
故选:D.
8.解:执行程序框图,有S=0,k=1,a=﹣1,代入循环,
第一次满足循环,S=﹣1,a=1,k=2;
满足条件,第二次满足循环,S=1,a=﹣1,k=3;
满足条件,第三次满足循环,S=﹣2,a=1,k=4;
满足条件,第四次满足循环,S=2,a=﹣1,k=5;
满足条件,第五次满足循环,S=﹣3,a=1,k=6;
满足条件,第六次满足循环,S=3,a=﹣1,k=7;
7≤6不成立,退出循环输出,S=3; 故选:B.
9.解:由几何关系可得,双曲线的渐近线方程为,圆心到渐近线距离为,则点到直线的距离为,
即,整理可得,双曲线的离心率.故选A.
10. 解:如图所示,设M、N、P分别为AB,BB1和B1C1的中点,
则AB1、BC1夹角为MN和NP夹角或其补角(因异面直线所成角为(0,]),
可知MN=AB1=,NP=BC1=;
作BC中点Q,则△PQM为直角三角形;∵PQ=1,MQ=AC,
△ABC中,由余弦定理得AC2=AB2+BC2﹣2AB•BC•cos∠ABC=4+1﹣2×2×1×(﹣)=7,
∴AC=, ∴MQ=; 在△MQP中,MP==;
在△PMN中,由余弦定理得cos∠MNP===﹣;
又异面直线所成角的范围是(0,],∴AB1与BC1所成角的余弦值为.故选C
11. 解:由题可得,
因为,所以,,故,
令,解得或,所以在上单调递增,在上单调递减,所以的极小值为,故选A.
12. 解:建立如图所示的坐标系,以BC中点为坐标原点,则A(0,),B(﹣1,0),C(1,0),
设P(x,y),则=(﹣x,﹣y),=(﹣1﹣x,﹣y),=(1﹣x,﹣y),
则•(+)=2x2﹣2y+2y2=2[x2+(y﹣)2﹣]
∴当x=0,y=时,取得最小值2×(﹣)=﹣, 故选:B
13.解:由题意可得,抽到二等品的件数符合二项分布,即,由二项分布的期望公式可得.故答案为:1.96
14. 解: f(x)=sin2x+cosx﹣=1﹣cos2x+cosx﹣,
令cosx=t且t∈[0,1],
则f(t)=﹣t2+t+=﹣(t﹣)2+1,
当t=时,f(t)max=1,即f(x)的最大值为1,故答案为:1
15. 解:等差数列{an}的前n项和为Sn,a3=3,S4=10,S4=2(a2+a3)=10,
可得a2=2,数列的首项为1,公差为1,
Sn=,=,
则 =2[1﹣++…+]=2(1﹣)=.故答案为:.
16. 解:如图所示,不妨设点M位于第一象限,设抛物线的准线与轴交于点,作与点,与点,由抛物线的解析式可得准线方程为,则,在直角梯形中,中位线,由抛物线的定义有:,结合题意,有,故.故答案为:6
17.(1)由得,即,
,得,则有.
(2)由(1)可知,则,得,
又,则.
18.(1)旧养殖法箱产量低于50kg的频率为,
新养殖法箱产量不低于50kg的频率为,
而两种箱产量相互,则.
(2)由频率分布直方图可得列联表
| 箱产量<50kg | 箱产量≥50kg | |
| 旧养殖法 | 62 | 38 |
| 新养殖法 | 34 | 66 |
则,
所以有99%的把握认为箱产量与养殖方法有关.
(3)新养殖法箱产量低于50kg的面积为,
产量低于55kg的面积为,
所以新养殖法箱产量的中位数估计值为(kg).
19.(1)取中点,连结.因为为中点,则.而由题可知,则,即四边形为平行四边形,所以.又,
故.
(2)因为,则以为坐标原点,所在直线分别为轴建立空间直角坐标系,如图所示.
取,设则得,,则,,可得点,所以.
取底面的法向量为,则,解得,则.因为,设面的法向量为,由得,取得,
则.故二面角的余弦值为.
20.(1)设,则,将点代入中得,
所以点的轨迹方程为.
(2)由题可知,设,则,
.由得,由(1)有,则有,所以,即过点
且垂直于的直线过的左焦点.
21.(1)的定义域为,则等价于.
设,则.由题可知,则由解得,所以为上的增函数,为上的减函数.则有
,解得.
(2)由(1)可知,则.
设,则.由解得,所以为上的增函数,为上的减函数.又因为,则在上存在唯一零点使得,即,且为,上的增函数,为上的减函数,则极大值为.
而,所以.
综上,.
22.(1)设极坐标为,极坐标为.则,
.由得的极坐标方程为.所以的直角坐标方程为.
(2)设极标为,由题可知,则有
.
即当时,面积的最大值为.
23.(1)
(2)因为
,
所以,解得.
