最新文章专题视频专题问答1问答10问答100问答1000问答2000关键字专题1关键字专题50关键字专题500关键字专题1500TAG最新视频文章推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37视频文章20视频文章30视频文章40视频文章50视频文章60 视频文章70视频文章80视频文章90视频文章100视频文章120视频文章140 视频2关键字专题关键字专题tag2tag3文章专题文章专题2文章索引1文章索引2文章索引3文章索引4文章索引5123456789101112131415文章专题3
当前位置: 首页 - 正文

非线性二阶中立型时滞微分方程的振动和非振动准则

来源:动视网 责编:小OO 时间:2025-09-22 23:10:00
文档

非线性二阶中立型时滞微分方程的振动和非振动准则

J.Sys.Sci.&Math.Scis.26(3)(2006,6),325–334(030008)(571158)(100080)(E)MR(2000)34K111[r(t)(x(t)+P(t)x(t−τ))]+Q1(t)f(x(t−σ1))−Q2(t)g(x(t−σ2))=0(E)τ>0,σi≥0,p(t)=0,p,Qi∈C([t0,+∞),R),i=1,2.,r∈C([t0,+∞),(0,+∞)),f,g∈C(r,R)xf(x)>0,xg(x)>0,(x=0).[1,2]Kulenovi
推荐度:
导读J.Sys.Sci.&Math.Scis.26(3)(2006,6),325–334(030008)(571158)(100080)(E)MR(2000)34K111[r(t)(x(t)+P(t)x(t−τ))]+Q1(t)f(x(t−σ1))−Q2(t)g(x(t−σ2))=0(E)τ>0,σi≥0,p(t)=0,p,Qi∈C([t0,+∞),R),i=1,2.,r∈C([t0,+∞),(0,+∞)),f,g∈C(r,R)xf(x)>0,xg(x)>0,(x=0).[1,2]Kulenovi
J.Sys.Sci.&Math.Scis.

26(3)(2006,6),325–334

(030008)

(571158)

(100080)

(E)

MR(2000)34K11

1

[r(t)(x(t)+P(t)x(t−τ)) ] +Q1(t)f(x(t−σ1))−Q2(t)g(x(t−σ2))=0(E)τ>0,σi≥0,p(t)=0,p,Q i∈C([t0,+∞),R),i=1,2.,r∈C([t0,+∞),(0,+∞)), f,g∈C(r,R)xf(x)>0,xg(x)>0,(x=0).

[1,2]

Kulenovi´c[3]

[3](E).2(E)

[3][1][4]3(E)

[5–8](E)

(E)

2003-09-28,2004-09-22.32626

1.1(E)[T x,+∞),T x≥t0x(t)

sup{|x(t)|:t≥T}>0,∀T≥T x

1.2(E)

1.3(E)

2

(E)

(c1)f g Lipchitz Lipchitz L f(A),L g(A),A

(c2)R(t)= t

t0

1

r(s)

d s,t≥t0,Q i(t)≥0,

+∞

R(t)Q i(t)dt<+∞,i=1,2.

(c3)a>0,aQ1(t)−Q2(t)≥0.

2.1(c1)–(c3)P0

|P(t)|≤P0<1

2

(1)

(E)

Banach X={x|x∈C([t0,+∞),R) x =sup

t≥t0

|x(t)|},

N1≥M1>0

1

1−P01−M1

P0

<

1

P0

(2)

A1={x∈X:M1≤x(t)≤N1,t≥t0}.

A1X

L1=max{L f(A1),L g(A1)},α1=max

x∈A1

{f(x)},

β1=min

x∈A1{f(x)},α2=max

x∈A1

{g(x)},β2=min

x∈A1

{g(x)}

(2)t≥t0,

+∞

t1R(s)[Q1(s)+Q2(s)]d s<

1−P0

L1

,(3)

0≤

+∞

t1

R(s)[α1Q1(s)−β2Q2(s)]d s≤(1−P0)N1−1(4)

+∞

t1

R(s)[β1Q1(s)−α2Q2(s)]d s≥0,(5)

3

327

T 1:A 1→X

(T 1x )(t )=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1−P (t )x (t −τ)+R (t ) +∞t [Q 1(s )f (x (s −σ1))−Q 2(s )g (x (s −σ2))]d s +

t

t 1

R (s )[Q 1(s )f (x (s −σ1))−Q 2(s )g (x (s −σ2))]d s,

t ≥t 1

(T 1x (t 1),

t 0≤t ≤t 1.T 1x

(1)

(4),

(T 1x )(t )≤1+P 0N 1+

+∞

t 1

R (s )[α1Q 1(s )−β2Q 2(s )]d s ≤N 1,t ≥t 1,

(1),(2)

(5),

(T 1x )(t )≥1−P 0N 1≥M 1

T 1x ⊂A 1.

T 1

A 1

∀x 1,x 2∈A 1

t ≥t 1,

(3)

|(T 1x 1)(t )−(T 1x 2)(t )|≤P 0|x 1(t −τ)−x 2(t −τ)|

+R (t ) +∞

t

Q 1(s )|f (x 1(s −σ1))−f (x 2(s −σ1))|d s

+R (t ) +∞

t

Q 2(s )|g (x 1(s −σ2))−g (x 2(s −σ2))|d s +

t

t 1R (s )Q 1(s )|f (x 1(s −σ1))−f (x 2(s −σ1))|d s +

t

t 1R (s )Q 2(s )|g (x 1(s −σ2))−g (x 2(s −σ2))|d s

≤P 0 x 1−x 2 +L 1 x 1−x 2

+∞

t R (s )[Q 1(s )+Q 2(s )]d s

=q 0 x 1−x 2 ,

q 0=P 0+

+∞

t

R (s )[Q 1(s )+Q 2(s )]d s <1,T 1A 1

Banach

T 1A 1x 1,

x 1(t )

(E)

2.1

P 1=lim sup t →+∞

{P (t )},P 2=lim inf t →+∞

{P (t )},

2.2(c 1)–(c 3)(i)0

P (t )≥0;

(6)(ii)

−1

P (t )≤0;

(7)

(E)

2.2

2.1,

A 2={x ∈X :M 2≤x (t )≤N 2,t ≥t 0}.

1−P14

3P1+1

[(1−P1)−M2].

(6)∃t2≥t0t≥t2

0≤P(t)<1+3P1

4

.

+∞

t2R(s)[Q1(s)+Q2(s)]d s<

3(1−P1)

4L2

,

0≤

+∞

t2R(s)[α1Q1(s)−β2Q2(s)]d s≤N2+P1−1,

+∞

t2

R(s)[β1Q1(s)−α2Q2(s)]d s≥0, L2=max{L f(A2),L g(A2)},α1,β1,α2,β2

T2:A2→X

(T2x)(t)=⎧

⎪⎪⎪

⎪⎨

⎪⎪⎪

⎪⎩

1−P1−P(t)x(t−τ)+R(t)

+∞

t

[Q1(s)f(x(s−σ1))−Q2(s)g(x(s−σ2))]d s +

t

t2

R(s)[Q1(s)f(x(s−σ1))−Q2(s)g(x(s−σ2))]d s,t≥t2 (T2x)(t2),t0≤t≤t2.

(7)

A3={x∈X:M3≤x(t)≤N3,t≥t0}. N3≥M3>0

04 3

(7)∃t3≥t0t≥t3

−1<3P2−1

4

≤P(t)≤0, +∞

t3R(s)[Q1(s)+Q2(s)]d s<

3(1+P2)

4L3

,

0≤

+∞

t3R(s)[α1Q1(s)−β2Q2(s)]d s≤(1+P2)

3

4

N3−1

, +∞

t3

R(s)[β1Q1(s)−α2Q2(s)]d s≥0,3329 L3=max{L f(A3),L g(A3)},α1,β1,α2,β2

T3:A3→X

(T3x)(t)=⎧

⎪⎪⎪

⎪⎨

⎪⎪⎪

⎪⎩

1+P2−P(t)x(t−τ)+R(t)

+∞

t

[Q1(s)f(x(s−σ1))−Q2(s)g(x(s−σ2))]d s +

t

t3

R(s)[Q1(s)f(x(s−σ1))−Q2(s)g(x(s−σ2))]d s,t≥t3 (T3x)(t3),t0≤t≤t3.

2.2

2.3(c1)–(c3)

(i)0P(t)>1;(8) (ii)−∞P(t)<−1.(9) P1,P2(E)

2.3 2.1,

A4={x∈X:M4≤x(t)≤N4,t≥t0}.

N4>M4>0

01

P1+ε

−1

P2−ε

N4,

1

P2−ε

P2+ε

P1+ε

<1 0<ε<

P2−1

2

.

(8)∃t4≥t0t≥t4

P2−ε≤P(t)≤P1+ε,(10) +∞

t4R(s)[Q1(s)+Q2(s)]d s<

(P2−ε)−1

L4

,

0≤

+∞

t4R(s)[α1Q1(s)−β2Q2(s)]d s≤(P2−ε)N4−1,

+∞

t4

R(s)[β1Q1(s)−α2Q2(s)]d s≥0, L4=max{L f(A4),L g(A4)},α1,β1,α2,β233026 T4:A4→X

(T4x)(t)=⎧

⎪⎪⎪

⎪⎨

⎪⎪⎪

⎪⎩

1

P(t+τ)

−x(t+τ)

P(t+τ)

+R(t+τ)

P(t+τ)

+∞

t+τ

[Q1(s)f(x(s−σ1))−Q2(s)g(x(s−σ2))]d s

+1

P(t+τ)

t+τ

t4

R(s)[Q1(s)f(x(s−σ1))−Q2(s)g(x(s−σ2))]d s,t≥t4 (T4x)(t4),t0≤t≤t4.

t+τ≥t0+max{σ1,σ2}.

(9)∃t5≥t0t≥t5

P2−δA5={x∈X:M5≤x(t)≤N5,t≥t0}.

N5>M5>0

M5<

−1

1+P2−δ

<

−1

1+P1+δ

≤N5,

+∞

t5R(s)[Q1(s)+Q2(s)]d s<−

1+P1+δ

L5

,

0≤

+∞

t5R(s)[α1Q1(s)−β2Q2(s)]d s≤

P1+δ

P2−δ

[1+(1+P2−δ)M5] +∞

t5

R(s)[β1Q1(s)−α2Q2(s)]d s≥0,

L5=max{L f(A5),L g(A5)},α1,β1,α2,β2 T5:A5→X

(T5x)(t)=⎧

⎪⎪⎪

⎪⎨

⎪⎪⎪

⎪⎩

−1

P(t+τ)

−x(t+τ)

P(t+τ)

+R(t+τ)

P(t+τ)

+∞

t+τ

[Q1(s)f(x(s−σ1))−Q2(s)g(x(s−σ2))]d s

+1

P(t+τ)

t+τ

t5

R(s)[Q1(s)f(x(s−σ1))−Q2(s)g(x(s−σ2))]d s,t≥t5, (T5x)(t5),t0≤t≤t5.

T5:A5→A5(E) 2.3

1[3]Q2(t)≡0f(x)≡x[9] (E)Q2(t)≡00≤P(t)≤1

(E)

(r(t)x (t)) +Q(t)x(t)=0(E )

[1] 2.2[4]2 +∞

t

Q(t)d t<+∞,

+∞t (

+∞

s

Q(u)d u)2

r(s)

≤1

4

+∞

t

Q(s)d s

3331

(E )

1

[t(x(t)+P(t)x(t−τ)) ] + 1

t2

+

1

t3

x35(t−σ1)−

2

t3

x3(t−σ2)=0(12)

P(t) 2.1-2.3R(t)=ln t,Q1(t)=1t2+1t3>0,Q2(t)=2t3,

+∞1R(t)Q i(t)d t<+∞,i=1,2.aQ1(t)−Q2(t)≥0,a>0,t≥2−a

a

(12)[1,3,4,9]

3

(E)(E)

+∞

1

r(t)

d t=+∞(13)

3.1(13)0≤P(t)≤1,Q1(t)≥0,Q2(t)f(x)x≥α>

0,(x=0),

+∞

Q1(s)[1−P(s−σ1)]d s=+∞

(E)

(E)x(t).

Z(t)=x(t)+P(t)x(t−τ)(14) Z(t)(E)t1≥t0t≥t1(r(t)Z (t)) <0.

r(t)Z (t))t

Z (t)≥0,t≥t1.(15) Z (t)<0

Z(t)≤Z(t1)+r(t1)z (t1)

t

t1

1

r(s)

d s,t≥t1.

(13),lim

t→+∞

Z(t)=−∞,Z(t)

(E)

(r(t)Z (t)) +αQ1(t)x(t−σ1)≤0,t≥t1. (14)

(r(t)Z (t)) +αQ1(t)[Z(t−σ1)−P(t−σ1)x(t−σ1−τ)≤0 Z(t)≥x(t)(15),

(r(t)Z (t)) +αQ1(t)[1−P(t−σ1)]Z(t−σ1)≤0,t≥t1.33226

W(t)=r(t)Z (t) Z(t−σ1)

W (t)=(r(t)Z (t))

Z(t−σ1)

−r(t)Z

(t)Z (t−σ1)

Z2(t−σ1)

≤−αQ1(t)[1−P(t−σ1)] 0≤W(t)≤W(t1)−α

t

t1

Q1(t)[1−P(s−σ1)]d s

3.1

2

1 t (x(t)+

1

1+t

(x(t−τ))

+

k

t

x3

t−

π

2

−(1−3t)x5

t−

π

3

=0,(16)

k>0, 3.1(16)[5–10]

(16).

(E)H(t)

[r(t)(x(t)+P(t)x(t−τ)) ] +Q1(t)f(x(t−σ1))−Q2(t)g(x(t−σ2))=H(t),(E1)

(E).

3.2σ1=0,σ2=τ>0,P(t)≥0,

f(x) x ≥α>0,g(x)

x

≥β>0(x=0)(17)

T≥t0T≤s1−βQ2(t)≥αQ1(t)P(t)≥0,t∈[s1,t1]∪[s2,t2],(18)

H(t)≤0,t∈[s1,t1]H(t)≥0,t∈[s2,t2],(19)

B i={u∈C1[s i,t i]:u(t)=0,u(s i)=u(t i)=0},i=1,2.

u∈B i,

K i(u)= t

i

s i

[αQ1(t)u2(t)−r(t)u 2(t)]d t≥0,i=1,2.(20)

(E1)

(E1)x(t),

Z(t)=x(t)+P(t)x(t−τ) Z(t)

V(t)=−r(t)Z (t)

Z(t)

"c":

V (t)=V2(t)

r(t)

+

Q1(t)f(x(t))−Q2(t)g(x(t−τ))

Z(t)

−H(t)

Z(t)

(21)

(18)(19),T≤s1H(t)≤0,t∈[s1,t1],

−βQ2(t)≥αQ1(t)P(t)≥0,t∈[s1,t1].

(21),

V (t)≥V2(t)

r(t)

+

αQ1(t)(x(t)−βQ2(t)(x(t−τ)

Z(t)

≥V 2(t)

r(t)

+αQ1(t),t∈[s1,t1].

u(t)∈B1(20).u2(t)(22)[s1,t1] t

1 s1u2(t)V (t)d t≥

t

1

s1

u2(t)V2(t)

r(t)

d t+

t

1

s1

αQ1(t)u2(t)d t

u(s1)=u(t1)=0)

− t

1

s1

2u(t)u (t)V(t)d t≥

t

1

s1

u2(t)V2(t)

r(t)

d t+

t

1

s1

αQ1(t)u2(t)d t

K1(u)+

t

1

s1

r(t)u (t)+

u(t)V(t)

r(t)

2

d t≤0(23)

(20)(23),

r(t)u (t)+u(t)V(t)=0,t∈[s1,t1].

(u(t)

Z(t)

) =0,t∈[s1,t1].

u(t)

Z(t)

=const,Z(t)>0,u(t)=0,t∈(s1,t1).c=0,u(s1)=u(t1)=0 (E1)[s2,t2]H(t)≥0B2

(E1) 3.2

2(E1)

(r(t)(x(t) ) +Q(t)f(x(t))=H(t),(E2)

3.2[11]1,[12][1][8]33426

[1]””1987,30(2):206–218.

[2]2001,20(1):1–10.

[3]Kulenovic M R S and Hadziomersoahic S.Existence of nonoscillatory solution of second order

linear neutral delay defferential equationa.J.Math.Anal.Appl.,1998,228:436–448.

[4]Li W T.Positive solutions of second order nonlinear differential equations.J.Math.Anal.Appl.,

1998,221:326–337.

[5]Erbe L H,Kong Q and Zhang B G.Oscillation Theory for Functional Differential Equations.

Marcel Dekker,New York,1995.

[6]Elbert A.Oscillation and nonoscilltion criteria for linear second order differential equations.J.

Math.Anal.Appl.,1998,226:207–219.

[7]Lalli B S.Oscilltions of nonlinear second order neutral delay differential equations.Bull.Inst.

Math.Academia Sinica.,1990,18(3):233–238.

[8]Kong Q.Interval criteria for oscillation of cecond order linear ordinary didderential equationa.J.

Math.Anal.Appl.,1999,229(2):258–270.

[9]Li H J and Liu W L.Oscilltion criteria for cecond order neutral differential equations.Canad.J.

Math.,1996,48(4):871–886.

[10]Li W T.Oscillation of certain second order nonlinear differential equations.J.Math.Anal.Appl.,

1998,227:1–14.

[11]Wong J S W.Oscillation criteria for a forced second order linear defferential equation.J.Math.

Anal.Appl.,1999,231:235–240.

[12]El-Sayed M A.An Oscillation criterion for a forced second order linear defferential equation.Proc.

Amer.Math.Soc.,1993,118:813–817.

OSCILLATION AND NONOSCILLATION CRITERIA FOR SECOND ORDER NONLINEAR NEUTRAL DELAY

DIFFERENTIAL EQUATIONS

Zhang Zhiyu Wang Xiaoxia

(North China Institute of Technology,Taiyuan030008)

Lin Shizhong

(Department of Mathematics,Hainan University,Haikou571158)

Yu Yuanhong

(Institute of Applied Mathematics,Chinese Academy of Sciences,Beijing100080) Abstract Some new oscillation and nonoscillation criteria for second order nonlinear neu-tral delay differential equations are established.Illustrative examples are given.Our theorems improve and generalize several known results.

Key words Positive and negative coefficient,second order neutral equation,oscillation, nonoscillation.

文档

非线性二阶中立型时滞微分方程的振动和非振动准则

J.Sys.Sci.&Math.Scis.26(3)(2006,6),325–334(030008)(571158)(100080)(E)MR(2000)34K111[r(t)(x(t)+P(t)x(t−τ))]+Q1(t)f(x(t−σ1))−Q2(t)g(x(t−σ2))=0(E)τ>0,σi≥0,p(t)=0,p,Qi∈C([t0,+∞),R),i=1,2.,r∈C([t0,+∞),(0,+∞)),f,g∈C(r,R)xf(x)>0,xg(x)>0,(x=0).[1,2]Kulenovi
推荐度:
  • 热门焦点

最新推荐

猜你喜欢

热门推荐

专题
Top