
26(3)(2006,6),325–334
(030008)
(571158)
(100080)
(E)
MR(2000)34K11
1
[r(t)(x(t)+P(t)x(t−τ)) ] +Q1(t)f(x(t−σ1))−Q2(t)g(x(t−σ2))=0(E)τ>0,σi≥0,p(t)=0,p,Q i∈C([t0,+∞),R),i=1,2.,r∈C([t0,+∞),(0,+∞)), f,g∈C(r,R)xf(x)>0,xg(x)>0,(x=0).
[1,2]
Kulenovi´c[3]
[3](E).2(E)
[3][1][4]3(E)
[5–8](E)
(E)
2003-09-28,2004-09-22.32626
1.1(E)[T x,+∞),T x≥t0x(t)
sup{|x(t)|:t≥T}>0,∀T≥T x
1.2(E)
1.3(E)
2
(E)
(c1)f g Lipchitz Lipchitz L f(A),L g(A),A
(c2)R(t)= t
t0
1
r(s)
d s,t≥t0,Q i(t)≥0,
+∞
R(t)Q i(t)dt<+∞,i=1,2.
(c3)a>0,aQ1(t)−Q2(t)≥0.
2.1(c1)–(c3)P0
|P(t)|≤P0<1
2
(1)
(E)
Banach X={x|x∈C([t0,+∞),R) x =sup
t≥t0
|x(t)|},
N1≥M1>0
1
1−P0 P0 < 1 P0 (2) A1={x∈X:M1≤x(t)≤N1,t≥t0}. A1X L1=max{L f(A1),L g(A1)},α1=max x∈A1 {f(x)}, β1=min x∈A1{f(x)},α2=max x∈A1 {g(x)},β2=min x∈A1 {g(x)} (2)t≥t0, +∞ t1R(s)[Q1(s)+Q2(s)]d s< 1−P0 L1 ,(3) 0≤ +∞ t1 R(s)[α1Q1(s)−β2Q2(s)]d s≤(1−P0)N1−1(4) +∞ t1 R(s)[β1Q1(s)−α2Q2(s)]d s≥0,(5) 3 327 T 1:A 1→X (T 1x )(t )= ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ 1−P (t )x (t −τ)+R (t ) +∞t [Q 1(s )f (x (s −σ1))−Q 2(s )g (x (s −σ2))]d s + t t 1 R (s )[Q 1(s )f (x (s −σ1))−Q 2(s )g (x (s −σ2))]d s, t ≥t 1 (T 1x (t 1), t 0≤t ≤t 1.T 1x (1) (4), (T 1x )(t )≤1+P 0N 1+ +∞ t 1 R (s )[α1Q 1(s )−β2Q 2(s )]d s ≤N 1,t ≥t 1, (1),(2) (5), (T 1x )(t )≥1−P 0N 1≥M 1 T 1x ⊂A 1. T 1 A 1 ∀x 1,x 2∈A 1 t ≥t 1, (3) |(T 1x 1)(t )−(T 1x 2)(t )|≤P 0|x 1(t −τ)−x 2(t −τ)| +R (t ) +∞ t Q 1(s )|f (x 1(s −σ1))−f (x 2(s −σ1))|d s +R (t ) +∞ t Q 2(s )|g (x 1(s −σ2))−g (x 2(s −σ2))|d s + t t 1R (s )Q 1(s )|f (x 1(s −σ1))−f (x 2(s −σ1))|d s + t t 1R (s )Q 2(s )|g (x 1(s −σ2))−g (x 2(s −σ2))|d s ≤P 0 x 1−x 2 +L 1 x 1−x 2 +∞ t R (s )[Q 1(s )+Q 2(s )]d s =q 0 x 1−x 2 , q 0=P 0+ +∞ t R (s )[Q 1(s )+Q 2(s )]d s <1,T 1A 1 Banach T 1A 1x 1, x 1(t ) (E) 2.1 P 1=lim sup t →+∞ {P (t )},P 2=lim inf t →+∞ {P (t )}, 2.2(c 1)–(c 3)(i)0 P (t )≥0; (6)(ii) −1 P (t )≤0; (7) (E) 2.2 2.1, A 2={x ∈X :M 2≤x (t )≤N 2,t ≥t 0}. 1−P1 3P1+1 [(1−P1)−M2]. (6)∃t2≥t0t≥t2 0≤P(t)<1+3P1 4 . +∞ t2R(s)[Q1(s)+Q2(s)]d s< 3(1−P1) 4L2 , 0≤ +∞ t2R(s)[α1Q1(s)−β2Q2(s)]d s≤N2+P1−1, +∞ t2 R(s)[β1Q1(s)−α2Q2(s)]d s≥0, L2=max{L f(A2),L g(A2)},α1,β1,α2,β2 T2:A2→X (T2x)(t)=⎧ ⎪⎪⎪ ⎪⎨ ⎪⎪⎪ ⎪⎩ 1−P1−P(t)x(t−τ)+R(t) +∞ t [Q1(s)f(x(s−σ1))−Q2(s)g(x(s−σ2))]d s + t t2 R(s)[Q1(s)f(x(s−σ1))−Q2(s)g(x(s−σ2))]d s,t≥t2 (T2x)(t2),t0≤t≤t2. (7) A3={x∈X:M3≤x(t)≤N3,t≥t0}. N3≥M3>0 0 (7)∃t3≥t0t≥t3 −1<3P2−1 4 ≤P(t)≤0, +∞ t3R(s)[Q1(s)+Q2(s)]d s< 3(1+P2) 4L3 , 0≤ +∞ t3R(s)[α1Q1(s)−β2Q2(s)]d s≤(1+P2) 3 4 N3−1 , +∞ t3 R(s)[β1Q1(s)−α2Q2(s)]d s≥0,3329 L3=max{L f(A3),L g(A3)},α1,β1,α2,β2 T3:A3→X (T3x)(t)=⎧ ⎪⎪⎪ ⎪⎨ ⎪⎪⎪ ⎪⎩ 1+P2−P(t)x(t−τ)+R(t) +∞ t [Q1(s)f(x(s−σ1))−Q2(s)g(x(s−σ2))]d s + t t3 R(s)[Q1(s)f(x(s−σ1))−Q2(s)g(x(s−σ2))]d s,t≥t3 (T3x)(t3),t0≤t≤t3. 2.2 2.3(c1)–(c3) (i)0 2.3 2.1, A4={x∈X:M4≤x(t)≤N4,t≥t0}. N4>M4>0 0 P1+ε −1 P2−ε N4, 1 P2−ε P1+ε <1 0<ε< P2−1 2 . (8)∃t4≥t0t≥t4 P2−ε≤P(t)≤P1+ε,(10) +∞ t4R(s)[Q1(s)+Q2(s)]d s< (P2−ε)−1 L4 , 0≤ +∞ t4R(s)[α1Q1(s)−β2Q2(s)]d s≤(P2−ε)N4−1, +∞ t4 R(s)[β1Q1(s)−α2Q2(s)]d s≥0, L4=max{L f(A4),L g(A4)},α1,β1,α2,β233026 T4:A4→X (T4x)(t)=⎧ ⎪⎪⎪ ⎪⎨ ⎪⎪⎪ ⎪⎩ 1 P(t+τ) −x(t+τ) P(t+τ) +R(t+τ) P(t+τ) +∞ t+τ [Q1(s)f(x(s−σ1))−Q2(s)g(x(s−σ2))]d s +1 P(t+τ) t+τ t4 R(s)[Q1(s)f(x(s−σ1))−Q2(s)g(x(s−σ2))]d s,t≥t4 (T4x)(t4),t0≤t≤t4. t+τ≥t0+max{σ1,σ2}. (9)∃t5≥t0t≥t5 P2−δ A5={x∈X:M5≤x(t)≤N5,t≥t0}. N5>M5>0 M5< −1 1+P2−δ < −1 1+P1+δ ≤N5, +∞ t5R(s)[Q1(s)+Q2(s)]d s<− 1+P1+δ L5 , 0≤ +∞ t5R(s)[α1Q1(s)−β2Q2(s)]d s≤ P1+δ P2−δ [1+(1+P2−δ)M5] +∞ t5 R(s)[β1Q1(s)−α2Q2(s)]d s≥0, L5=max{L f(A5),L g(A5)},α1,β1,α2,β2 T5:A5→X (T5x)(t)=⎧ ⎪⎪⎪ ⎪⎨ ⎪⎪⎪ ⎪⎩ −1 P(t+τ) −x(t+τ) P(t+τ) +R(t+τ) P(t+τ) +∞ t+τ [Q1(s)f(x(s−σ1))−Q2(s)g(x(s−σ2))]d s +1 P(t+τ) t+τ t5 R(s)[Q1(s)f(x(s−σ1))−Q2(s)g(x(s−σ2))]d s,t≥t5, (T5x)(t5),t0≤t≤t5. T5:A5→A5(E) 2.3 1[3]Q2(t)≡0f(x)≡x[9] (E)Q2(t)≡00≤P(t)≤1 (E) (r(t)x (t)) +Q(t)x(t)=0(E ) [1] 2.2[4]2 +∞ t Q(t)d t<+∞, +∞t ( +∞ s Q(u)d u)2 r(s) ≤1 4 +∞ t Q(s)d s 3331 (E ) 1 [t(x(t)+P(t)x(t−τ)) ] + 1 t2 + 1 t3 x35(t−σ1)− 2 t3 x3(t−σ2)=0(12) P(t) 2.1-2.3R(t)=ln t,Q1(t)=1t2+1t3>0,Q2(t)=2t3, +∞1R(t)Q i(t)d t<+∞,i=1,2.aQ1(t)−Q2(t)≥0,a>0,t≥2−a a (12)[1,3,4,9] 3 (E)(E) +∞ 1 r(t) d t=+∞(13) 3.1(13)0≤P(t)≤1,Q1(t)≥0,Q2(t)f(x)x≥α> 0,(x=0), +∞ Q1(s)[1−P(s−σ1)]d s=+∞ (E) (E)x(t). Z(t)=x(t)+P(t)x(t−τ)(14) Z(t)(E)t1≥t0t≥t1(r(t)Z (t)) <0. r(t)Z (t))t Z (t)≥0,t≥t1.(15) Z (t)<0 Z(t)≤Z(t1)+r(t1)z (t1) t t1 1 r(s) d s,t≥t1. (13),lim t→+∞ Z(t)=−∞,Z(t) (E) (r(t)Z (t)) +αQ1(t)x(t−σ1)≤0,t≥t1. (14) (r(t)Z (t)) +αQ1(t)[Z(t−σ1)−P(t−σ1)x(t−σ1−τ)≤0 Z(t)≥x(t)(15), (r(t)Z (t)) +αQ1(t)[1−P(t−σ1)]Z(t−σ1)≤0,t≥t1.33226 W(t)=r(t)Z (t) Z(t−σ1) W (t)=(r(t)Z (t)) Z(t−σ1) −r(t)Z (t)Z (t−σ1) Z2(t−σ1) ≤−αQ1(t)[1−P(t−σ1)] 0≤W(t)≤W(t1)−α t t1 Q1(t)[1−P(s−σ1)]d s 3.1 2 1 t (x(t)+ 1 1+t (x(t−τ)) + k t x3 t− π 2 −(1−3t)x5 t− π 3 =0,(16) k>0, 3.1(16)[5–10] (16). (E)H(t) [r(t)(x(t)+P(t)x(t−τ)) ] +Q1(t)f(x(t−σ1))−Q2(t)g(x(t−σ2))=H(t),(E1) (E). 3.2σ1=0,σ2=τ>0,P(t)≥0, f(x) x ≥α>0,g(x) x ≥β>0(x=0)(17) T≥t0T≤s1 H(t)≤0,t∈[s1,t1]H(t)≥0,t∈[s2,t2],(19) B i={u∈C1[s i,t i]:u(t)=0,u(s i)=u(t i)=0},i=1,2. u∈B i, K i(u)= t i s i [αQ1(t)u2(t)−r(t)u 2(t)]d t≥0,i=1,2.(20) (E1) (E1)x(t), Z(t)=x(t)+P(t)x(t−τ) Z(t) V(t)=−r(t)Z (t) Z(t) "c": V (t)=V2(t) r(t) + Q1(t)f(x(t))−Q2(t)g(x(t−τ)) Z(t) −H(t) Z(t) (21) (18)(19),T≤s1 −βQ2(t)≥αQ1(t)P(t)≥0,t∈[s1,t1]. (21), V (t)≥V2(t) r(t) + αQ1(t)(x(t)−βQ2(t)(x(t−τ) Z(t) ≥V 2(t) r(t) +αQ1(t),t∈[s1,t1]. u(t)∈B1(20).u2(t)(22)[s1,t1] t 1 s1u2(t)V (t)d t≥ t 1 s1 u2(t)V2(t) r(t) d t+ t 1 s1 αQ1(t)u2(t)d t u(s1)=u(t1)=0) − t 1 s1 2u(t)u (t)V(t)d t≥ t 1 s1 u2(t)V2(t) r(t) d t+ t 1 s1 αQ1(t)u2(t)d t K1(u)+ t 1 s1 r(t)u (t)+ u(t)V(t) r(t) 2 d t≤0(23) (20)(23), r(t)u (t)+u(t)V(t)=0,t∈[s1,t1]. (u(t) Z(t) ) =0,t∈[s1,t1]. u(t) Z(t) =const,Z(t)>0,u(t)=0,t∈(s1,t1).c=0,u(s1)=u(t1)=0 (E1)[s2,t2]H(t)≥0B2 (E1) 3.2 2(E1) (r(t)(x(t) ) +Q(t)f(x(t))=H(t),(E2) 3.2[11]1,[12][1][8]33426 [1]””1987,30(2):206–218. [2]2001,20(1):1–10. [3]Kulenovic M R S and Hadziomersoahic S.Existence of nonoscillatory solution of second order linear neutral delay defferential equationa.J.Math.Anal.Appl.,1998,228:436–448. [4]Li W T.Positive solutions of second order nonlinear differential equations.J.Math.Anal.Appl., 1998,221:326–337. [5]Erbe L H,Kong Q and Zhang B G.Oscillation Theory for Functional Differential Equations. Marcel Dekker,New York,1995. [6]Elbert A.Oscillation and nonoscilltion criteria for linear second order differential equations.J. Math.Anal.Appl.,1998,226:207–219. [7]Lalli B S.Oscilltions of nonlinear second order neutral delay differential equations.Bull.Inst. Math.Academia Sinica.,1990,18(3):233–238. [8]Kong Q.Interval criteria for oscillation of cecond order linear ordinary didderential equationa.J. Math.Anal.Appl.,1999,229(2):258–270. [9]Li H J and Liu W L.Oscilltion criteria for cecond order neutral differential equations.Canad.J. Math.,1996,48(4):871–886. [10]Li W T.Oscillation of certain second order nonlinear differential equations.J.Math.Anal.Appl., 1998,227:1–14. [11]Wong J S W.Oscillation criteria for a forced second order linear defferential equation.J.Math. Anal.Appl.,1999,231:235–240. [12]El-Sayed M A.An Oscillation criterion for a forced second order linear defferential equation.Proc. Amer.Math.Soc.,1993,118:813–817. OSCILLATION AND NONOSCILLATION CRITERIA FOR SECOND ORDER NONLINEAR NEUTRAL DELAY DIFFERENTIAL EQUATIONS Zhang Zhiyu Wang Xiaoxia (North China Institute of Technology,Taiyuan030008) Lin Shizhong (Department of Mathematics,Hainan University,Haikou571158) Yu Yuanhong (Institute of Applied Mathematics,Chinese Academy of Sciences,Beijing100080) Abstract Some new oscillation and nonoscillation criteria for second order nonlinear neu-tral delay differential equations are established.Illustrative examples are given.Our theorems improve and generalize several known results. Key words Positive and negative coefficient,second order neutral equation,oscillation, nonoscillation.
