最新文章专题视频专题问答1问答10问答100问答1000问答2000关键字专题1关键字专题50关键字专题500关键字专题1500TAG最新视频文章推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37视频文章20视频文章30视频文章40视频文章50视频文章60 视频文章70视频文章80视频文章90视频文章100视频文章120视频文章140 视频2关键字专题关键字专题tag2tag3文章专题文章专题2文章索引1文章索引2文章索引3文章索引4文章索引5123456789101112131415文章专题3
当前位置: 首页 - 正文

2024年九年级中考数学专题复习:圆与二次函数的综合压轴题(含答案)

来源:动视网 责编:小OO 时间:2025-09-22 23:08:27
文档

2024年九年级中考数学专题复习:圆与二次函数的综合压轴题(含答案)

2024年九年级中考数学专题复习:圆与二次函数的综合压轴题(1)求抛物线的解析式.3.如图,在平面直角坐标系中,顶点为(B、C两点(点B在点C的左侧),已知(1)求此抛物线的解析式;(2)过点B作线段AB的垂线交抛物线与点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴与⊙C的位置关系,并给出证明.(3)在抛物线上是否存在一点P,使△ACP是以AC为直角边的直角三角形.若存在,求点P的坐标;若不存在,请说明理由.4.如图所示:在平面直角坐标系中,圆M经过原点O且与X轴Y轴分别相交于
推荐度:
导读2024年九年级中考数学专题复习:圆与二次函数的综合压轴题(1)求抛物线的解析式.3.如图,在平面直角坐标系中,顶点为(B、C两点(点B在点C的左侧),已知(1)求此抛物线的解析式;(2)过点B作线段AB的垂线交抛物线与点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴与⊙C的位置关系,并给出证明.(3)在抛物线上是否存在一点P,使△ACP是以AC为直角边的直角三角形.若存在,求点P的坐标;若不存在,请说明理由.4.如图所示:在平面直角坐标系中,圆M经过原点O且与X轴Y轴分别相交于
2024年九年级中考数学专题复习:圆与二次函数的综合压轴

(1)求抛物线的解析式.

3.如图,在平面直角坐标系中,顶点为(

B、C两点(点B在点C的左侧),已知

(1)求此抛物线的解析式;

(2)过点B作线段AB的垂线交抛物线与点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴与⊙C的位置关系,并给出证明.

(3)在抛物线上是否存在一点P,使△ACP是以AC为直角边的直角三角形.若存在,求点P的坐标;若不存在,请说明理由.

4.如图所示:在平面直角坐标系中,圆M经过原点O且与X轴Y轴分别相交于A(-6,0),B(0,-8)两点

(1)请写出直线AB的解析式

(2)若有一抛物线的对称轴平行于Y轴且经过点M,顶点C在圆M上,开口向下且经过点B.求此抛物线的函数表达式

(3)设(2)中的抛物线交X轴于D、E两点,在抛物线上是否存在点P,使得

.若存在,请直接写出所有点P的坐标,若不存在,请说明理由

5.如图,二次函数y=a +bx +c 的图象交x 轴于A 、B 两点,交y 轴于点

C .且B (1

,0),若将△BOC 绕点O 逆时针旋转90°,所得△DOE 的顶点E 恰好与点A 重合,且△ACD 的面积为3.

(1)求这个二次函数的关系式.

(2)设这个二次函数图象的顶点为M ,请在y 轴上找一点P ,使得△PAM 的周长最小,并求出点P 的坐标.

(3)设这个函数图象的对称轴l 交x 轴于点N ,问:A 、M 、C 、D 、N 这5个点是否会在同一个圆上?若在同一个圆上,请求出这个圆的圆心坐标,并作简要说明;若不可能,请说明理由.

6.如图,在直角坐标系中,以点A (

,0 )为圆心,以2为半径的圆与x 轴相

交于点B 、C ,与y 轴相交于点D 、E (1)若抛物线

经过C 、D 两点,求抛物线的表达式,并判断点B 是

否在该抛物线上(2)在(1)中的抛物线的对称轴上求一点P ,使得△PBD 的周长最小

(3)设Q 为(1)中的抛物线对称轴上的一点,在抛物线上是否存在这样的点M ,使得四边形BCQM 是平行四边形,若存在,求出点M 的坐标;若不存在,说明理由

2x

(1)求∠ACB的大小;

(2)写出A,B两点的坐标;

(3)试确定此抛物线的解析式;

(4)在该抛物线上是否存在一点D,使线段OP与CD互相平分?若存在,求出点D

的坐标;若不存在,请说明理由.

8.如图,已知抛物线y=ax2+bx+c(a>0,c<0)交x轴于点A,B,交y轴于点C,设

过点A,B,C三点的圆与y轴的另一个交点为D.

(1)如图1,已知点A,B,C的坐标分别为(﹣2,0),(8,0),(0,﹣4);

①求此抛物线的表达式与点D的坐标;

②若点M为抛物线上的一动点,且位于第四象限,求△BDM面积的最大值;

(2)如图2,若a=1,求证:无论b,c取何值,点D均为定点,求出该定点坐标.

9.如图,在平面直角坐标系中,圆M经过原点O,且与x轴、y轴分别相交于A(-8,0),B(0,-6)两点.

(1)求出直线AB的函数解析式;

(2)若有一抛物线的对称轴平行于y轴且经过点M,顶点C在圆M上,开口向下,且(1)求该抛物线的函数关系式及顶点

12.如图,已知在平面直角坐标系xOy 中,抛物线与x 轴交于点A (﹣

1

,0

)和点B ,与y 轴相交于点C (0,3),抛物线的对称轴为直线.(1)求这条抛物线的关系式,并写出其对称轴和顶点M

的坐标;(2)如果直线y=kx+b 经过C 、M 两点,且与x 轴交于点D ,点C 关于直线的对称点为N ,试证明四边形CDAN 是平行四边形;

(3)点P 在直线上,且以点P 为圆心的圆经过A 、B 两点,并且与直线CD 相切,求点P 的坐标.

13.在平面直角坐标系中,直线

交轴于点,交轴于点,抛物线

经过点,与直线交于点.(1)求抛物线的解析式;

(2)如图,横坐标为的点在直线上方的抛物线上,过点作轴交2y ax 2x c =++l l l

直线于点,以为直径的圆交直线于另一点.当点在轴上时,求的周长;

将绕坐标平面内的某一点按顺时针方向旋转,得到,点

的对应点分别是.若的两个顶点恰好落在抛物线上,请直接写出点

2)(2)当△BOD为等边三角形时,求点B的坐标;

(3)若以点B为圆心、r为半径作圆B,当圆B与两个坐标轴同时相切时,求点B的坐标.

16.如图,已知抛物线y=ax2+bx﹣3(a≠0)经过点A(3,0),B(﹣1,0).

(1)求该抛物线的解析式;

(2)若以点A为圆心的圆与直线BC相切于点M,求切点M的坐标;

(3)若点Q在x轴上,点P在抛物线上,是否存在以点B,C,Q,P为顶点的四边形是平行四边形?若存在,直接写出点P的坐标;若不存在,请说明理由.

参:

)((3)

-;(,)(,;最大值为;(3≤m≤.

﹣x+x+1

=;

(,)或(﹣,)

185

文档

2024年九年级中考数学专题复习:圆与二次函数的综合压轴题(含答案)

2024年九年级中考数学专题复习:圆与二次函数的综合压轴题(1)求抛物线的解析式.3.如图,在平面直角坐标系中,顶点为(B、C两点(点B在点C的左侧),已知(1)求此抛物线的解析式;(2)过点B作线段AB的垂线交抛物线与点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴与⊙C的位置关系,并给出证明.(3)在抛物线上是否存在一点P,使△ACP是以AC为直角边的直角三角形.若存在,求点P的坐标;若不存在,请说明理由.4.如图所示:在平面直角坐标系中,圆M经过原点O且与X轴Y轴分别相交于
推荐度:
  • 热门焦点

最新推荐

猜你喜欢

热门推荐

专题
Top