
数字式示波器Tektronix TDS1002初步使用
示波器最主要的功能就是把测量点的电压随时间变化曲线直观地显示在屏幕上。示波器是最重要的电子测量仪器之一,也是使用最频繁的电子仪器之一。要正确使用一台示波器,要充分利用一台示波器的功能和性能指标,就必需充分阅读该示波器的使用说明书。示波器使用说明书中的主要性能指标和基本操作方法列于本节之后。下面所介绍的仅仅是实验中使用该示波器所所涉及到的最基本的内容。
1. 功能简介
Tektronix TDS1002示波器是数字式示波器,其正面外形如图1。它对来自探头的信号经放大,然后采样,再将采样数据对应的波形记录,最后将波形显示在屏幕上。同时,在示波器内部可对数据作一些处理,例如,统计平均,快速傅立叶变换,并将处理过的波形显示在屏幕上。它还可以通过GPIB 卡(General Purpose Interface Bus )与计算机、打印机等设备进
垂直:
增益和位置 采集数据; 模式和时基 波形记录: 2500点
每一通道 外部
显示屏
计算机接口图1 Tektronix TDS1002示波器正面外形图 波形显示屏幕 菜单显示区 菜单选 择按钮 通道1 通道2 时间 选择 触发 选择 自检 信号
行数据交换,因此,可由计算机对示波器采集到的数据做进一步的处理。Tektronix TDS1002示波器的最高采样率1GHz ,屏幕显示的波形由2500采样点的数据连接而成。其原理示意图如图2。
2. 关于Tektronix TDS1002数字式示波器使用中的
若干问题
1) 探头×1、×10
本示波器的输入阻抗为1M Ω电阻和20pF 电容的
并联。并联电容是为了抑制高频干扰。示波器探头有
×1、×10转换开关。当探头开关置于×1时,示波器
输入回路的等效电路如图4。通常有R s < 有限,给电容充电需要时间,所以,示波器输入回路 向示波器内部电路输出的电压信号的前沿变缓,上升 时间延长,图中右上方为其示意图。这样一来,在 示屏幕上看到的方波的上升沿将大于实际输入方波的 上升沿。 当示波器探头置于×10时,输入回路的等效电路如图5 。在稳态,示波器输入回路对输入信号衰减10倍。在模拟示波器中,就需要人对在屏幕上显示的波形的幅值×10倍,“×10”的说法由此而来。在数字示波器中沿用了这一说法,当在通道菜单中将探头设为× 10 后,屏幕上显示的波形和数据都已由示波器×10 了。×10可大大改善方波的上升沿,试分析如下。设方波幅值为E ,上升时刻为t=0。由克希霍夫电压定律可知,此时刻两个电容上的电压之和等于信号源电压, E )0( v ) (v 1C 2C =+++ (1 ) 时,示波器输入回路的等效电路 4探头开关置于×1时,示波器输入回路的等效电路示波器输入等效电路 信号源等 效电路 由两个电容中储能之和为串联等效电容中的储能可知, 22 12121C 122C 2E C C C C 21)0(v C 21)0(v C 21+=+++ (2) 由(1)、(2)式可解出 E C C C )0(v )0(v 2 12o 1C +==++ (3) 当暂态结束时,v o 为R 1和R 2对输入电压幅值的分压 E R R R )(v 2 11o +=∞ (4) 由RC 电路过渡过程三要素法可得电容C 1上的电压变化的过程,即示波器输入回路向示波器内部电路输出的电压信号v o , T t 211212211o e )E R R R E C C C (E R R R )t (v -+-+++= (5) 其中,T 为电路的时间常数。由(5)式可知,若2 11212R R R C C C +=+,称此为临界补偿,则在+=0t 时刻有E R R R )0(v 2 11o +=+,示波器输入回路向示波器内部电路输出信号的上升沿与信号源输出信号的上升沿完全一样,幅值衰减了10倍。若 211212R R R C C C +≠+,则形成过补偿或欠补偿,如图6。实际中,由于每台仪器的输入回路不可能完全一样,所以需要通过调整C 2使其达到临界补偿。又由于输入回路中还存在着分布参数,实际中可能得到的只能是近似的临界补偿。 用探头×10档,使示波器输入回路向 示波器内部电路输出的电压信号衰减了十 倍。示波器自身的噪声是一定的,所以使 用×10档,在改善输入信号上升沿的同 时,输入信号的信噪比降低了。对于幅值 较大的方波信号,上升沿的重要性大于幅 值的信噪比,所以,测量周期较短、幅值 较大的方波,探头应使用×10档。 对于频率小于6MHz 的正弦波,由于 其上升速率慢于示波器探头×1档时输入 回路的上升速率,所以应使用×1。若使用 ×10档将减小输入信号信噪比。对于正确测量正弦波小信号,示波器输入回路向示波器内部电路输出的电压信号的信噪比是十分重要的。对于频率大于6MHz 的正弦波,由于其上升速率快于示波器探头×1档时输入回路的上升速率,所以应使用×10。若使用×1档将使输入信号的幅值减小。 2) 触发 设由示波器探头输入的信号如图7(a ),示波器“触发电平”、“垂直触发位置”如图7(b),触发方式为“正常触发”,“上升沿触发”,触发信号源为“通道1”。当输入信号电平由低向高上达到设置的“触发电平”时, “波形记录”电路将此时的电压 值定位在图7(b)所示的“水平触 发位置”与“触发电平”两条虚 线的交点上,为便于叙述,记录 该时刻的电压为v o (t o )。每一幅 “波形记录”共有2500个数据 点,显示屏时间坐标为水平坐标, 共分10个大格,每格应有250 个数据点。图7(b)中,“水平触 发位置”设置在第6格,所以, “波形记录”电路取t o 前的1500 个电压数据,取t o 后的999个电 压数据,组成2500个数据的“波 形记录”,然后送到显示电路,于 是显示屏上就显示出一幅波形图,如图7(b)。若图7(a)所示波形周期是稳定的,那么如图7(a)所示的时间为T 的波形将被重复地显示在显示屏上,观察者就可以看到显示屏上有一个稳定的波形。若图7(a)中低电平和高电平时有较小的波纹起伏,显示过程中的迭加将使显示屏上波形的对应的线条变粗。 以上述状态为初始状态,改变其中的一项或两项设置,观察显示屏上的波形。做完一项后,将示波器状态恢复到初始状态,再做下一项。 若将“上升沿触发”改为“下降沿出发”,那么图7(b)中矩形波的后沿与水平虚线的交点将前移至“水平触发位置”。 若将“触发电平”移出输入波形的幅值范围,由于输入信号的任一时刻的电压值都不与所设置的“触发电平”相等,所以示波器不触发,显示屏上就没有波形显示。 若将触发方式改为“自动触发”,此时显示屏上的波形如图7(b)。若再将“触发电平” 移出输入波形的幅值范围,由于输入信号的任一时刻的电压值都不与所设置的“触发电平”相等,所以示波器就自动地连续触发,即采满2500个点就送去显示,这使得图7(a)中两个显示时间T 之间原先不被显示的波形也被显示在显示屏上。这时在显示屏上显示的是快速左右移动的、不稳定的波形。 当触发信号源为“通道1”时,所设置的触发电平与来自通道1的信号相比较。而信号正是从通道1进入示波器的,所以在显示屏上显示出通道1输入的波形。若将触发信号源改为“通道2”,信号仍然由通道1输入,通道2没有信号输入。这时,所设置的触发电平与通道2的电压相比较。由于通道2 没有电压波形输入,所以电路不触发,显示屏没有波形显示。 若通道1、通道2都有电压信号输入,这时应选择波形周期稳定的通道作为触发通道。被选作触发通道的输入信号的周期不稳定,将使显示屏上的波形左右晃动。若两个通道的信号周期都很稳定,这时应选择信噪比高的通道作为触发通道。被选作触发通道的输入信号的信噪比较低,也将使显示屏上的波形左右晃动。 3) 采集数据 (a) 触发电平水平触发位置 (b) 图7 触发同步示意图 数字式示波器首先对输入的时域连续量采样,得到时域离散序列,然后再对时域离散序列做处理。所以,正确地采集数据对正确地使用数字示波器是十分重要的。 首先叙述采样定理:设被采样的时域连续量x(t)中包含的最高频率分量为f imax ,若以采样频率f s 对x(t)做数据采集,得到时域 离散序列x(n),则由x(n) 经低通滤波 器再恢复出x(t),要求采样频率满足 max i s f 2f ≥ (6) 当上式取等号时,称f s 为奈奎斯特频率 f N 。当采样频率f s 小于f N 时就出现了频 率混迭,如图8。发生频率混迭后,就无 法由x(n) 经低通滤波器再恢复出x(t), 或者说,x(n)不再是x(t)的时域离散序列。 必须避免发生频率混迭。图9是以不同采 样频率对100kHz 的正弦波进行傅立叶变换 示意图。其中左图是以大于f N 的采样频率变换结果,显示其基频为100kHz(4乘25.0kHz)。右图是以小于f N 的采样频率变换结果,显示其基频为1kHz(4乘250Hz),产生假波现象,没有正确反映输入信号频率。 图9 正确采样(左)错误采样(右)示例 要避免发生上述现象,首先应知道输入电压的最高频率f imax ,然后选择示波器的时域窗口的时间宽度,由此可知道示波器的采样频率。例如,在时域窗口的下方有W100 ms ,这表示整个时域窗口宽100ms ,其中有2500个时域等间隔的离散数据,由此可计算出采样频率 kHz 25101002500f 3 s =⨯=- (7) 若满足采样定理,则不会发生假波混迭;若不满足采样定理,则应减小时域窗口的宽度,以提高采样频率,或者外接低通滤波器,减小输入量的最高频率f imax ,以满足采样定理。 本数字示波器有三种数据采集方式:取样、峰值检测和平均。 “取样”是开机默认数据采集模式。在这种方式下,对输入的连续量直接采样。 图8 频率混迭使x(n)中出现了假波 “峰值检测”模式在“5秒/格”或更慢时有效,用于检测时域宽度大于等于10 ns 的“毛刺”。当时域窗口设置为“2.5秒/格”或更快时,示波器会自动的将数据采集模式改为“取样”模式。因为当采样频率足够高时,可以通过取样就捕捉到输入中的“毛刺”。 “平均”模式是对输入采样做滑动统计平均。平均次数可选择为4、16、、128。例如取平均次数为4时,在图2所示的“采集数据:模式和时基”框中,将4个采集到的长度都为2500个点的原始序列相加再除4,得到一个新的序列,再送入“波形记录:2500点”。当其后又采集了新的2500个数据点的原始序列后,将去掉最早的2500个数据点的原始序列,用新的2500个数据点的原始序列和其前面的3个2500个数据点原始序列共4个2500个数据点的原始序列相加再除4,又得到一个新的序列,如此重复。 25002,1n 4)n (x )n (x 4 1i i 1av ==∑= (8) 25002,1n 4)n (x )n (x 5 2i i 2av ==∑= (9) 其中, x av1(n)、x av2(n)、…是经平均得到的新的序列,x i (n)是第i 个 采集到的2500个数据点的原始序列。 在采集到的原始序列中,通常包含信号、噪声和干扰。(通常称需要的量是信号。称有很多原因但没有一个原因明显突出的形成的不需要的量是噪声。称有明显原因形成的不需要的量是干扰。)对于周期信号,在触发同步时,平均运算使周期信号不变。可认为噪声是随机过程,对随机过程的采样是随机变量,随机变量可有不同的统计分布,通常,随机变量之间是相互统计或统计上相关性较弱或很弱的。通过N 次统计平均,噪声的功率会减小。从而提高在示波器显示的时域波形的信噪比。图10是做统计平均的作用的示意图。 对采集到的原始序列做统计平均,具体能减小多少噪声功率与随机变量的统计分布和平均次数有关。通常平均次数越多,噪声功率减小得也越多,但随着平均次数的增加,每增加一次平均所减少的噪声功率量越来越小,例如,若随机变量为零均值正态分布N(0,σ2) ,做m-1次统计平均后为N (0,σ2/m ),做一次统计平均后(即用两个2500个数据点的原始序列统计平均),噪声功率为σ2/2,平均每次统计平均运算减少二分之一的噪声功率;做三次统计平均后(即用四个2500个数据点的原始序列统计平均),噪声功率为σ2/4平均每次统计平均运算减少四分之一的噪声功率。而做平均的计算量却不断增加,所以选择平均次数应适当。 这里对数据采集只是就示波器的使用做最粗略的介绍,对数据采集问题的学习应阅读有关的信号处理的书籍。 4) 傅立叶变换 对最高频率分量为f m 的时域信号x(t),以T s =1/f s 为采样周期顺序采样,若f s ≥2f m ,采图 10 做统计平均的作用的示意图 集到N 个离散数据{x(n),n=0,1,2,…N-1};又若被采集的信号x(t+NT s )以外的x(t)以x(t+NT s )为周期而重复,则有以下离散傅立叶变换和离散反傅立叶变换 1N 2,1,0k )n N k 2j exp()n (x )k (X 1 N 0 n -=π-=∑-= (10) 1N 2,1,0n ) k N n 2j exp()n (X N 1)n (x 1N 0n -=π=∑-= (11) 离散傅立叶变换有快速算法,FFT 。本示波器中用的是基2快速算法。取波形记录中间 的2048个数据点组成时域离散序列。由于时域离散序列中的数是实数,所以做FFT 以后得 到的离散傅立叶变换以f s /2为中心,两边共轭对称,所以只显示1024个点的离散傅立叶幅 值谱。图11是傅立叶变换的结果。其中,1是中心刻度线处的频率;2是以“dB/分度”(0dB =1V RMS )为单位的垂直刻度;3是以“频率/分度”为单位的水平刻度;4是以“采样数/秒” 为单位的采样速率;5是FFT 窗口类型。 当被采集的信号是正弦波时,如图12(a)上方所示,其傅立叶频谱应是一条线谱。数据采集不能保证被采集的时域信号正好是正弦波周期的整数倍,如图12(a )中下方所示,傅立叶变换假设时域信号是被采集信号的周期延拓,周期延拓后的时域波形不再是正弦波,那么由此得到的傅立叶频谱如图12(a )下方所示的频谱,它不再是一条线谱,其在频域上被 展宽,幅值略有减小。称这种现象为因截断引起的频谱泄漏展宽。 在本示波器中,减小因截断引起的频谱泄漏展宽的办法是加窗口函数,这是一种常用的方法。窗函数的旁瓣特性直接影响着各频谱分量向相邻频谱的泄漏宽度。每种窗函数有其自身的特性,不同的窗函数适用于不同的应用。为简化窗函数的选择,有必要定义一些参数以便对不同的窗进行比较。这些参数有:-3dB 主瓣带宽、-6dB 主瓣带宽、旁瓣峰值、旁瓣衰减速度。本示波器有三种窗口函数供使用者选择:矩形窗,汉宁窗和平顶窗。表1是这三种窗函数特性参数,表2是三者的定义式。图13是这三种窗函数的时域和频域波形。 矩形窗实际上是对采样数据没有加窗,傅立叶幅值谱的主瓣窄,旁瓣衰减速度慢,第一旁瓣幅值大,泄漏大,即频率分辩率好,但幅值精度差,宜用于分析脉冲或瞬态波形。汉宁窗宜用于分析周期信号,与矩形窗比,其傅立叶幅值谱的主瓣宽,旁瓣衰减速度快,第一旁瓣幅值小,泄漏小,即幅值精度较好,但频率分辩率较低。平顶窗亦宜用于分析周期信号, 图11 示波器的付立叶变换结果 (b) (a ) 图12 加窗口函数的傅立叶变换 窗类型 -3dB主 瓣宽度 -6dB 主瓣 宽度 旁瓣峰 值 旁瓣衰减速度 矩形窗 (Rectangular) 0.bin 1.21 bin -13dB 20dB/十倍频程 汉宁窗 (Hanning) 1.44bin 2.00 bin -32dB 60dB/十倍频程 平顶窗 (Flattop) 2.94 bin 3.56bin -44dB 20dB/十倍频程 注:bin 是频率分辨率或FFT分辨率,表示频率点间隔,其定义式为:bin= 采样速率/采样点数 与矩形窗比,其傅立叶幅值谱的主瓣较宽,但比汉宁窗的窄;旁瓣衰减速度较快,但比汉宁窗的慢;第一旁瓣幅值较小,但比汉宁窗的大;泄漏相对较小,但比汉宁窗的大;即幅值精度好于矩形性窗,差于汉宁窗;频率分辩率低于矩形窗,但高于汉宁窗。 要选择正确的窗函数,必须先估计信号的频谱成份。若要求频率分辩率高,应使用矩形窗。若要求幅值精度高,泄漏小,应使用汉宁窗。若要求兼顾频率分辩率和幅值精度,则可选用平顶窗。 图12(b)所示的是加窗口函数汉宁窗后的结果,由图可见,因截断引起的频谱泄漏展宽被大大地减小了。 图13 几种常用的窗函数的时域和频域波形 当被分析的信号不是正弦波时,在离散傅立叶变换中,信号的时域波形可被看作由多个正弦波迭加而成的波形,因此,数据采集更不能保证被采集的时域信号中的各个频率分量正好都是该分量正弦波周期的整数倍。所以在分析非正弦波的周期信号时更应加窗。常用的窗函数还用多种,本示波器可供选择的窗函数只有汉宁窗和平顶窗。 本示波器是对显示屏上所示的波形做FFT 。在做FFT 前,应将波形的零电平线移到示波器显示屏的零位线处(过显示屏垂直方向中点的水平线),这样才能在离散傅立叶频谱中正确反映信号的直流分量。应将波形全部放在显示屏内,若垂直放大量过大,部分波形被削去,那么得到的是被削波后的时域波形的离散傅立叶频谱;若垂直放大量过小,则时域信噪比降低,相应地频域的信噪比也降低了。 在本示波器中离散傅立叶变换的结果是傅立叶幅值谱。傅立叶幅值谱以分贝(dB)的形式显示。其参考电压是1V RMS ,即有效值1伏。第n 点上谱线的dB 数L n 为 )dB (V 1V lg 20L RMS iRMSn n (12) 其中,V iRMSn 表示输入电压的离散傅立叶幅值谱在第n 点处的分量的有效值。使用光标可读出每一个离散点上的傅立叶幅值谱谱线的dB 数。通过改变示波器输入放大倍数改变信号在示波器的时域窗口中波形的幅值,可相应地改变示波器傅立叶变换窗口的傅立叶幅值谱的幅值,但不会改变用光标读出的dB 数。 这里对傅立叶变换只是就示波器的使用做最粗略的介绍,对傅立叶变换问题的学习应阅读有关的信号处理的书籍。 3. 关于本示波器的具体性能指标和基本操作使用方法 以下关于本示波器的具体性能指标和基本操作使用方法摘自“TEK TDS1002 Oscilloscope User Guide ”。直接阅读原版用户手册,比阅读翻译后的用户手册更有利于了解关于本示波器的具体性能指标和基本操作使用方法。在使用本示波器前,使用者必须阅读以下的内容。 TEK TDS1002 Oscilloscope User Guide Specifications All specifications apply to the TDS1000-series oscilloscopes. P2200 probe specifications appear at the end of this chapter. To verify that the oscilloscope meets specifications, the oscilloscope must first meet the following conditions: * The oscilloscope must have been operating continuously for twenty minutes within the specified operating temperature. * Y ou must perform the Do Self Cal operation, accessible through the Utility menu, if the operating temperature changes by more than 5℃. * The oscilloscope must be within the factory calibration interval All specifications are guaranteed unless noted “typical”. Oscilloscope Specifications Acquisition Acquisition Modes Sample, Peak Detect, and Average Acquisition Rate, typical Up to 180 waveforms per second, per channel (Sample acquisition mode, no measurements) Acquisition Mode Acquisition Stops After Sample, Peak Detect Single acquisition, all channels simultaneously Single Sequence Average N acquisitions, all channels simultaneously, N is selectable from 4, 16, , and 128 Inputs Input Coupling DC, AC, or GND Input Impedance, DC Coupled 1 MΩ ±2% in parallel with 20 pF ±3 pF P2200 Probe Attenuation 1X, 10X Supported Probe Attenuation Factors 1X, 10X, 100X, 1000X Over voltage Category Maximum Voltage CAT I and CAT II 300 VRMS, Installation Category II CAT III 150 VRMS Maximum Voltage Between Signal and Common at input BNC Installation Category II; decade at 20 dB/decade above 100 kHz to 13 V peak AC at 3 MHz¹ and above. For non-sinusoidal waveforms, peak value must be less than 450 V. Excursion above 300 V should be less than 100 ms duration. RMS signal level including any DC component removed through AC coupling must be limited to 300 V. If these values are exceeded, damage to the instrument may result. 100:1 at 60 Hz, 20:1 at 30 MHz¹ Channel-to-Channel Common Mode Rejection, typical Measured on MATH Ch1 - Ch2 waveform, with test signal applied between signal and common of both channels, and with the same VOLTS/DIV and coupling settings on each channel ≥ 100:1 at 30 MHz¹ Channel-to-Channel Crosstalk Measured on one channel, with test signal applied between signal and common of the other channel, and with the same VOLTS/DIV and coupling settings on each channel Vertical Digitizers 8-bit resolution (except when set to 2 mV/div), each channel sampled simultaneously VOLTS/DIV Range 2 mV/div to 5 V/div at input BNC Position Range 2 mV/div to 200 mV/div, ±2 V > 200 mV/div to 5 V/div, ±50 V Analog Bandwidth in 60 MHz¹ When vertical scale is set to < 5 mV modes at BNC or with P2200 probe, DC Coupled 20 MHz¹ When vertical scale is set to ≥5 mV. 50 MHz¹ When vertical scale is set to < 5 mV Analog Bandwidth in Peak Detect mode (50 s/div to 5 μs/div²) typical 20 MHz¹ When vertical scale is set to ≥5 mV. Selectable Analog Bandwidth Limit, typical 20 MHz¹ Lower Frequency Limit, AC Coupled ≤ 10 Hz at BNC ≤ 1 Hz when using a 10X passive probe Rise Time at BNC, typical < 5.8 ns Peak Detect Response² Captures 50% or greater amplitude of pulses ≥12ns wide typical (50 s/div to 5 _s/div) in the center 8 vertical divisions ±3% for Sample or Average acquisition mode, 5 V/div to 10 mV/div DC Gain Accuracy ±4% for Sample or Average acquisition mode, 5 mV/div and 2 mV/div Measurement Type Accuracy Average of ≥16 waveforms with vertical position at zero ±(3% ×reading + 0.1 div + 1 mV) when 10 mV/div or greater is selected DC Measurement Accuracy, Average Acquisition Mode Average of ≥16 waveforms with vertical position not at zero ±[3% ×(reading + vertical position) + 1% of vertical position + 0.2 div] Add 2 mV for settings from 2 mV/div to 200 mV/div Add 50 mV for settings from > 200 mV/ div to 5 V/div Volts Measurement Repeatability, Average Acquisition Mode Delta volts between any two averages of ≥16 waveforms acquired under same setup and ambient conditions ±(3% ×reading + 0.05 div) Horizontal Sample Rate Range 5 S/s to 1 GS/s Waveform Interpolation (sin x)/x Record Length 2500 samples for each channel SEC/DIV Range 5 ns/div to 50 s/div, in a 1, 2.5, 5 sequence Sample Rate and Delay Time Accuracy ±50 ppm over any ≥1 ms time interval Conditions Accuracy Delta Time Measurement Accuracy Full Bandwidth) Single-shot, Sample mode ±(1 sample interval + 100 ppm × reading + 0.6 ns) > 16 averages ±(1 sample interval + 100 ppm × reading + 0.4 ns) Sample interval = s/div÷250 5 ns/div to 10 ns/div (-4 div × s/div) to 20 ms 25 ns/div to 100 _s/div (-4 div × s/div) to 50 ms Position Range 250 μs/div to 50 s/div (-4 div × s/div) to 50 s Trigger Coupling Sensitivity CH1, CH2, 1 div from DC to 10 MHz¹, 1.5 div from 10 MHz¹ to Full EXT 200 mV from DC to 100 MHz¹, 350 mV from 100 MHz to 200 MHz¹ Trigger Sensitivity, Edge Trigger Type DC EXT/5 1 V from DC to 100 MHz¹, 1.5 V from 100 MHz to 200 MHz¹ Coupling Sensitivity AC Same as DC at 50 Hz and above NOISE REJ Reduces the DC-coupled trigger sensitivity by 2 times for > 10 mv/div to 5 V/div HF REJ Same as the DC-coupled limit from DC to 7 kHz, attenuates signals above 80 kHz Trigger Sensitivity, Edge Trigger Type, typical LF REJ Same as the DC-coupled limits for frequencies above 300 kHz, attenuates signals below 300kHz Source Range CH1, CH2 ±8 divisions from center of screen EXT ±1.6 V Trigger Level Range EXT/5 ±8 V Accuracies are for signals having rise and fall times ≥ 20 ns Source Accuracy Internal ±0.2 div ×volts/div within ±4 divisions from center screen EXT ±(6% of setting + 40 mV) Trigger Level Accuracy, typical EXT/5 ±(6% of setting + 200 mV) SET LEVEL TO 50%, typical Operates with input signals ≥ 50 Hz Default Settings, Video Trigger Coupling is AC and Auto except for a single sequence acquisition Composite video signal Source Range Internal Pk-pk amplitude of 2 divisions EXT 400 mV Sensitivity, Video Trigger Type, typical EXT/5 2 V Signal Formats and Field Rates, Video Supports NTSC, PAL, and SECAM broadcast systems for any field or any line Trigger Type Hold off Range 500ns to 10s ¹Bandwidth reduced to 6 MHz with a 1X probe. ²The oscilloscope reverts to Sample mode when the SEC/DIV (horizontal scale) is set from 2.5 _s/div to 5 ns/div on 1 GS/s models, or from 2.5 _s/div to 2.5 ns/div on 2 GS/s models. The Sample mode can still capture 10 ns glitches. Display Area In addition to displaying waveforms, the display is filled with many details about the waveform and the oscilloscope control settings. 1. Icon display shows acquisition mode. Sample mode Peak detect mode Average mode 2. Trigger status indicates the following: Armed. The oscilloscope is acquiring pretrigger data. All triggers are ignored in this state. Ready. All pretrigger data has been acquired and the oscilloscope is ready to accept a trigger. Trig’d. The oscilloscope has seen a trigger and is acquiring the posttrigger data. Stop. The oscilloscope has stopped acquiring waveform data. Acq. Complete. The oscilloscope has completed a Single Sequence acquisition. Auto. The oscilloscope is in auto mode and is acquiring waveforms in the absence of triggers. Scan. The oscilloscope is acquiring and displaying waveform data continuously in scan mode. 3. Marker shows horizontal trigger position. Turn the HORIZONTAL POSITION knob toadjust the position of the marker. 4. Readout shows the time at the center graticule. The trigger time is zero. 5. Marker shows Edge or Pulse Width trigger level. 6. On-screen markers show the ground reference points of the displayed waveforms. If there is no marker, the channel is not displayed. 7. An arrow icon indicates that the waveform is inverted. 8. Readouts show the vertical scale factors of the channels. 9. A BW icon indicates that the channel is bandwidth limited. 10. Readout shows main time base setting. 11. Readout shows window time base setting if it is in use. 12. Readout shows trigger source used for triggering. 13. Icon shows selected trigger type as follows: -- Edge trigger for the rising edge. -- Edge trigger for the falling edge. -- Video trigger for line sync. -- Video trigger for field sync. -- Pulse Width trigger, positive polarity. -- Pulse Width trigger, negative polarity. 14. Readout shows Edge or Pulse Width trigger level. 15. Display area shows helpful messages; some messages display for only three seconds. If you recall a saved waveform, readout shows information about the reference waveform, such as RefA 1.00V 500µs. The oscilloscope displays a message area at the bottom of the screen that conveys the following types of helpful information: *Directions to access another menu, such as when you push the TRIG MENU button: For TRIGGER HOLDOFF, go to HORIZONTAL Menu *Suggestion of what you might want to do next, such as when you push the MEASURE button: Push an option button to change its measurement *Information about the action the oscilloscope performed, such as when you push the DEFAULT SETUP button: Default setup recalled *Information about the waveform, such as when you push the AUTOSET button: Square wave or pulse detected on CH1 16. Readout shows trigger frequency. Using the Menu System The user interface of TDS1000- and TDS2000-series oscilloscopes was designed for easy access to specialized functions through the menu structure. When you push a front-panel button, the oscilloscope displays the corresponding menu on the right side of the screen. The menu shows the options that are available when you push the unlabeled option buttons directly to the right of the screen. (Some documentation may also refer to the option buttons as screen buttons, side-menu buttons,bezel buttons, or soft keys.) The oscilloscope uses four methods to display menu options: *Page (Submenu) Selection: For some menus, you can use the top option button to choose two or three submenus. Each time you push the top button, the options change. For example, when you push the top button in the SAVE/REC Menu, the oscilloscope cycles through the Setups and Waveforms submenus. *Circular List: The oscilloscope sets the parameter to a different value each time you push the option button. For example, you can push the CH1 MENU button and then push the top option button to cycle through the Vertical (channel) Coupling options. *Action: The oscilloscope displays the type of action that will immediately occur when you push an Action option button. For example, when you push the DISPLAY Menu button and then push the Contrast Increase option button, the oscilloscope changes the contrast immediately. *Radio: The oscilloscope uses a different button for each option. The currently- selected option is highlighted. For example, the oscilloscope displays various acquisition mode options when you push the ACQUIRE Menu button. T o select an option, push the corresponding button. Vertical Controls CH1, CH2, CURSOR1 and CURSOR2 POSITION. Positions the waveform vertically. When you display and use cursors, an LED lights to indicate the alternative function of the knobs to move the cursors. CH1, CH2 MENU. Displays the vertical menu selections and toggles the display of the channel waveform on and off. VOLTS/DIV (CH1 & CH2). Selects calibrated scale factors. MATH MENU. Displays waveform math operations menu and can also be used to toggle the math waveform on and off. Horizontal Controls POSITION. Adjusts the horizontal position of all channel and math waveforms. The resolution of this control varies with the time base setting. NOTE. T o make a large adjustment to the horizontal position, turn the SEC/DIV knob to a larger value, change the horizontal position, and then turn the SEC/DIV knob back to the previous value. When you view help topics, you can use this knob to scroll through links or index entries. HORIZ MENU. Displays the Horizontal Menu. SET TO ZERO. Sets the horizontal position to zero. SEC/DIV. Selects the horizontal time/div (scale factor) for the main or the window time base. When Window Zone is enabled, it changes the width of the window zone by changing the window time base. Trigger Controls LEVEL and USER SELECT. When you use an Edge trigger, the primary function of the LEVEL knob is to set the amplitude level the signal must cross to cause an acquisition. Y ou can also use the knob to perform USER SELECT alternative functions. The LED lights below the knob to indicate an alternative function. USER SELECT Description Hold off Sets the amount of time before another trigger event can be accepted; Video line number Sets the oscilloscope to a specific line number when the Trigger Type option is set to Video and the Sync option is set to Line Number Pulse width Sets the width of the pulse when the Trigger Type option is set to Pulse and you select the Set Pulse Width option TRIG MENU. Displays the Trigger Menu. SET TO 50%. The trigger level is set to the vertical midpoint between the peaks of the trigger signal. FORCE TRIG. Completes an acquisition regardless of an adequate trigger signal. This button has no effect if the acquisition is already stopped. TRIG VIEW. Displays the trigger waveform in place of the channel waveform while the Menu and Control Buttons SAVE/RECALL. Displays the Save/Recall Menu for setups and waveforms. MEASURE. Displays the automated measurements menu. ACQUIRE. Displays the Acquire Menu. DISPLAY. Displays the Display Menu. CURSOR. Displays the Cursor Menu. Vertical Position controls adjust cursor position while displaying the Cursor Menu and the cursors are activated. Cursors remain displayed (unless the Type option is set to Off) after leaving the Cursor Menu but are not adjustable. UTILITY. Displays the Utility Menu. HELP. Displays the Help Menu. DEFAULT SETUP. Recalls the factory setup. AUTOSET. Automatically sets the oscilloscope controls to produce a usable display of the input signals. SINGLE SEQ. Acquires a single waveform and then stops. RUN/STOP. Continuously acquires waveforms or stops the acquisition. PRINT. Starts print operations. An extension module with a Centronics, RS-232, or GPIB port is required. Connectors PROBE COMP. Voltage probe compensation output and ground. Use to electrically match the probe to the oscilloscope input circuit. The probe compensation ground and BNC shields connect to earth ground and are considered to be ground terminals CAUTION. If you connect a voltage source to a ground terminal, you may damage the oscilloscope or the circuit under test. To avoid this, do not connect a voltage source to any ground terminals. CH1 & CH2. Input connectors for waveform display. EXT TRIG. Input connector for an external trigger source. Use the Trigger Menu to select the Ext or Ext/5 trigger source. 4.关于RS-232和GPIB(General Purpose Interface Bus)的使用将另做介绍。
