
后来发现遗漏的第八块地的数据:,。
要求汇总全部8块地数据后进行以下各项计算,并对计算结果的经济意义和统计意义做简要的解释。
(1)该农产品试验产量对施肥量X(公斤/亩)回归模型进行估计;
(2)对回归系数(斜率)进行统计假设检验,信度为0.05;
(3)估计可决系数并进行统计假设检验,信度为0。05。
解:首先汇总全部8块地数据:
=255+20 =275
=1217.71+7=10507
=10507+202 = 10907
= 10907-8=1453.88
=3050+400=3450
=8371.429+7=1337300
=1337300+4002 = 1497300
=1497300 -8()== 9487。5
==3122.857+7=114230
=114230+20400 =122230
=122230-834。375431.25 =3636.25
(1)该农产品试验产量对施肥量X(公斤/亩)回归模型进行估计
统计意义:当增加1个单位,Y平均增加2。5011个单位.
经济意义:当施肥量增加1公斤,亩产量平均增加2。5011公斤。
(2)对回归系数(斜率)进行统计假设检验,置信度为0。05。
= 0。2122
H0: b = 0 H1: b≠0 = = 11。7839
> 2。447(=)
∴拒绝假设H0: b = 0, 接受对立假设H1: b≠0
统计意义:在95%置信概率下,=2.5011与b=0之间的差异不是偶然的,=2。5011不是由b=0这样的总体所产生的。
经济意义:在95%置信概率下,施肥量对亩产量的影响是显著的.
(3)估计可决系数并进行统计假设检验,信度为0。05。
统计意义:在Y的总变差中,有95。86%可以由X做出解释。回归方程对于样本观测点拟合良好。
经济意义:在亩产量的总变差中,有95。86%是可以由施肥量做出解释的.
∴拒绝假设 接受对立假设
统计意义:在95%的置信概率下,回归方程可以解释的方差与未被解释的方差之间的差异不是偶然的,不是由这样的总体产生的。
经济意义:在95%的置信概率下,施肥量对亩产量的影响显著。
2、试将下列非线性函数模型的线性化:
(1);
(2)
解:(1)由 可得,
令,则可得线性模型
(2)令则原模型可化为线性模型
3、利用《中国统计年鉴(2006)》中提供的有关数据,可以对2005年国内各地区居民消费进行分析。如果以各省(自治区、直辖市)居民可支配收入(X,单位:元)作为解释变量,以居民消费性支出(Y,单位:元)作为被解释变量,利用Eviews软件,可以得到以下估计结果:
| Dependent Variable: Y | ||||
| Method: Least Squares | ||||
| Sample: 1 31 | ||||
| Included observations: 31 | ||||
| Variable | Coefficient | Std。 Error | t-Statistic | Prob。 |
| C | 346。0459 | (a) | 1。131693 | |
| X | 0.728453 | 0.028858 | (b) | |
| R-squared | 0.9568 | Mean dependent var | 7773。217 | |
| Adjusted R—squared | 0.954966 | S。D。 dependent var | 2183.308 | |
| S。E. of regression | 463.3222 | Akaike info criterion | 15.17706 | |
| Sum squared resid | 6225356。 | Schwarz criterion | 15。26958 | |
| Log likelihood | —233.2445 | F—statistic | 637。1699 | |
| Durbin—Watson stat | 1。372727 | Prob(F-statistic) | 0。000000 | |
(2)已知;
.请对模型参数的显著性做出判断(5分);
(3)利用回归结果进行简要分析(5分).
解:(1)(a)为305.7770;(b)为25.24223
(2)需要使用检验。由于;而模型中截距项和斜率项的值分别为1.131693和25。24223,前者不能通过10%水平的显著性检验,后者则可以通过5%的显著性检验。实际上二者的值分别为0。2670和0.0000.当然,截距项的实际价值不大.
(3)要点如下:第一,模型总体显著,拟合优度较高;第二,边际消费倾向为0.73左右;第三,由于模型考虑因素较少、形式过于简单,部分检验(如DW检验)不太理想,需做进一步完善。
4、为研究中国各地区入境旅游状况,建立了各省市旅游外汇收入(Y,百万美元)、旅行社职工人数(X1,人)、国际旅游人数(X2,万人次)的模型,用某年31个省市的截面数据估计结果如下:
t=(—3.066806) (6。652983) (3。3780)
R2=0.934331 F=191。14 n=31
(1)从经济意义上考察估计模型的合理性.
(2)在5%显著性水平上,分别检验参数的显著性。
(3)在5%显著性水平上,检验模型的整体显著性。
解:(1)由模型估计结果可看出:旅行社职工人数和国际旅游人数均与旅游外汇收入正相关。在假定其它变量不变的条件下,旅行社职工人数增加1人,旅游外汇收入平均将增加0.1179百万美元;在假定其它变量不变的条件下,国际旅游人数增加1万人次,旅游外汇收入平均增加1。5452百万美元.
(2)取,查表得
因为3个参数t统计量的绝对值均大于,说明经t检验3个参数均显著不为0,即旅行社职工人数和国际旅游人数分别对旅游外汇收入都有显著影响。
(3)取,查表得,由于,说明旅行社职工人数和国际旅游人数联合起来对旅游外汇收入有显著影响,线性回归方程显著成立.
5、下表给出三变量模型的回归结果:
| 方差来源 | 平方和(SS) | 自由度(d.f.) | 平方和的均值(MSS) |
| 来自回归(ESS) | 65965 | — | — |
| 来自残差(RSS) | _- | — | — |
| 总离差(TSS) | 66042 | 14 |
(2)求RSS?
(3)ESS和RSS的自由度各是多少?
(4)求和?
(5)检验假设:和对无影响。你用什么假设检验?为什么?
解:(1) 样本量为:15
(2) RSS=TSS-ESS=66042-65965=77
(3) ESS的自由度是3,RSS的自由度是11
(4)
(5)进行显著性检验(t-检验),假如自变量的系数显著不为0时,表明自变量对因变量是有影响的;假如自变量的系数显著为0时,表明自变量对因变量是无影响的。
6、假设在模型中,之间的相关系数为零,于是有人建议你进行如下回归:
(1)是否存在?为什么?
(2)
(3)是否有?
解:(1) 存在.
因为
当之间的相关系数为零时,离差形式的
有
同理有:
(2)会的。
(3) 存在。
因为
当时,
同理,有
7、克莱因与戈德伯格曾用1921—1950年(1942—1944年战争期间略去)美国国内消费Y和工资收入X1、非工资—非农业收入X2、农业收入X3的时间序列资料,利用OLSE估计得出了下列回归方程:
(括号中的数据为相应参数估计量的标准误)。
试对上述模型进行评析,指出其中存在的问题。
解:、从模型拟合结果可知,样本观测个数为27,消费模型的判定系数,F统计量为107.37,在0.05置信水平下查分子自由度为3,分母自由度为23的F临界值为3。028,计算的F值远大于临界值,表明回归方程是显著的.模型整体拟合程度较高。
依据参数估计量及其标准误,可计算出各回归系数估计量的t统计量值:
除外,其余的值都很小。工资收入X1的系数的t检验值虽然显著,但该系数的估计值过大,该值为工资收入对消费边际效应,因为它为1.059,意味着工资收入每增加一美元,消费支出的增长平均将超过一美元,这与经济理论和常识不符.
另外,理论上非工资-非农业收入与农业收入也是消费行为的重要解释变量,但两者的t检验都没有通过.这些迹象表明,模型中存在严重的多重共线性,不同收入部分之间的相互关系,掩盖了各个部分对解释消费行为的单独影响。
8、设消费函数为
式中,为消费支出;为个人可支配收入;为个人的流动资产;为随机误差项,并且(其中为常数).试回答以下问题:
(1)选用适当的变换修正异方差,要求写出变换过程;
(2)写出修正异方差后的参数估计量的表达式.
解、(1)因为,所以取,用乘给定模型两端,得
上述模型的随机误差项的方差为一固定常数,即
(2)根据加权最小二乘法及第四章里(4.5)和(4。6)式,可得修正异方差后的参数估计式为
其中
9、在研究生产中的劳动在增加值中所占的份额(即劳动份额的变动时,有以下模型:
模型A:
模型B:
其中,Y为劳动的份额,为劳动时间。根据该研究时期内的16年数据进行参数估计,得到模型结果为
模型A:
模型B:
其中,括号中的数字是检验值。
则查表得
则查表得
(1)模型A中有没有自相关?模型B呢?
(2)如何解释自相关的存在?
(3)你怎样区分“纯粹”自相关和模型形式设定错误?
解。(1)A有正自相关,B无自相关。
(2)经济变量惯性、经济行为的滞后性、随机因素的干扰、设定偏误等都会导致自相关的发生.
(3)有图示检验法和DW检验法。
比如DW检验法:分四种情况,1)当时,表明存在一阶正自相关。2)当,表明不能确定存在自相关。3)当,表明不存在一阶自相关。4)当,表明不能确定存在自相关5)当,表明存在一阶负自相关。
对模型A来说,,所以存在一阶正相关.
对模型B来说,,所以无自相关。
10、假定价格是按照如下的适应性预期假设形成的:
其中是预期价格,而是真实价格。
假定,试填补下表中的空格。
| 时期 | ||
| t —3 | 100 | 110 |
| t —2 | 125 | |
| t -1 | 155 | |
| t | 185 | |
| t +1 | —- |
| 时期 | ||
| t —3 | 100 | 110 |
| t —2 | 105 | 125 |
| t —1 | 115 | 155 |
| t | 135 | 185 |
| t +1 | 160 | -— |
| 年份 PCE PDI | 年份 PCE PDI | 年份 PCE PDI |
| 19701492。0 1668。1 19711538。8 1728.4 1972 1961。9 1797。4 1973 16。6 1916.3 1974 1674。0 16.6 1975 1711。9 1931。7 | 1976 1803。9 2001。0 1977 1883.8 2066.6 1978 1961。0 2167.4 1979 2004。4 2212。6 1980 2000.4 2214.3 1981 2042.2 2248。6 | 1982 2050.7 2261。5 1983 2146。0 2331.9 1984 2249.3 2469。8 1985 2354。8 2542。8 1986 2455.2 20.9 1987 2521。0 2686。3 |
(1) 解释这两个回归模型的结果。
(2) 短期和长期边际消费倾向(MPC)是多少?
解、(1)先用第一个模型回归,结果如下:
| Dependent Variable: PCE | ||||
| Method: Least Squares | ||||
| Date: 07/27/05 Time: 21:41 | ||||
| Sample: 1970 1987 | ||||
| Included observations: 18 | ||||
| Variable | Coefficient | Std. Error | t-Statistic | Prob. |
| C | -216。4269 | 32.69425 | —6。619723 | 0.0000 |
| PDI | 1。008106 | 0.015033 | 67.05920 | 0。0000 |
| R—squared | 0.9955 | Mean dependent var | 1955。606 | |
| Adjusted R-squared | 0。996233 | S.D. dependent var | 307.7170 | |
| S。E。 of regression | 18.88628 | Akaike info criterion | 8.819188 | |
| Sum squared resid | 5707。065 | Schwarz criterion | 8。918118 | |
| Log likelihood | -77。37269 | F-statistic | 4496。936 | |
| Durbin-Watson stat | 1。366654 | Prob(F—statistic) | 0。000000 | |
DW=1。302
利用第二个模型进行回归,结果如下:
| Dependent Variable: PCE | ||||
| Method: Least Squares | ||||
| Date: 07/27/05 Time: 21:51 | ||||
| Sample (adjusted): 1971 1987 | ||||
| Included observations: 17 after adjustments | ||||
| Variable | Coefficient | Std. Error | t-Statistic | Prob。 |
| C | -233.2736 | 45.55736 | —5。120436 | 0。0002 |
| PDI | 0.982382 | 0。140928 | 6.970817 | 0。0000 |
| PCE(-1) | 0.037158 | 0.144026 | 0.257997 | 0。8002 |
| R—squared | 0。996542 | Mean dependent var | 1982。876 | |
| Adjusted R-squared | 0.996048 | S.D. dependent var | 293.9125 | |
| S。E。 of regression | 18.47783 | Akaike info criterion | 8.829805 | |
| Sum squared resid | 4780。022 | Schwarz criterion | 8。976843 | |
| Log likelihood | -72。05335 | F-statistic | 2017.0 | |
| Durbin—Watson stat | 1.570195 | Prob(F-statistic) | 0.000000 | |
DW=1。4542
(2)从模型一得到MPC=1。0070;从模型二得到,短期MPC=0.9759,长期MPC=
0.9759+(-0。043)=0。9329
12、一个由容量为209的样本估计的解释CEO薪水的回归方程
t= (15.3) (8.03) (2。75) (1。775) (2。130) (-2。5)
其中,Y表示年薪水平(单位:万元),表示年收入(单位:万元),表示公司股票收益(单位:万元);、和均为虚拟变量,分别表示金融业、消费品工业和公用事业。假设对比产业为交通运输业。
(1)、解释三个虚拟变量参数的经济含义;
(2)保持和不变,计算公用事业和交通运输业之间估计薪水的近似百分比差异。这个差异在1%的显著水平上是统计显著的吗?
解:(1)年薪水平的参数的经济含义为:当销售收入与公司股票收益保持不变时,金融业的CEO要比交通运输业的CEO多获薪水15.8个百分点。其他两个可类似解释.
(2)公用事业和交通运输业之间估计薪水的近似百分比差异就是以百分数解释的公用事业的参数,即为28。3%。由于参数的t统计值为-2.5,它大于1%显著性水平下自由度为203的t分布的临界值1.96,因此这种差异是统计上显著的。
13、已知简单的Keynesian收入决定模型如下:
(消费方程)
(投资方程)
(定义方程)
要求(1)导出简化型方程;
(2)试用阶条件与秩条件确定每个结构方程的识别状态;整个模型的识别状态如何?
解:.(1)
(2)M=3,k=2。
阶条件:
消费方程:,该方程可能是过度识别。投资方程:,该方程可能是恰好识别.
秩条件:
1),,恰好识别。
2),,恰好识别。
整个模型是可以识别的.
