班级 姓名 学号 等第
1.如图所示,正方形的面积为12,是等边三角形,点在正方形内,在对角线上有一点,使的和最小,则这个最小值为( )
A. B. C.3 D.
第1题图 第2题图 第3题图
2.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为( )
A.90° B.60° C.45° D.30°
3.如图,在梯形ABCD中,AD∥BC,E是BC的中点,AD=5,BC=12,CD=4,∠C=,点P是BC边上一动点,设PB长为x.
(1)当x的值为 时,以点P、A、D、E为顶点的四边形为直角梯形.
(2)当x的值为 时,以点P、A、D、E为顶点的四边形为平行四边形.
4.Rt△ABC中,∠BAC=90°,AB=AC=2,以AC为一边,在△ABC外部作等腰直角三角形 ACD ,则线段BD的长为 。
5.如图①,在等腰梯形ABCD,AD//BC,AE⊥BC于点E,DF⊥BC于点F,AD=2cm,BC=6cm,AE=4cm,点P、Q分别在线段AE、DF上,顺次连接B、P、Q、C,线段BP、PQ、QC、CB所围攻成的封闭图形记为M,若点P在线段AE上运动时,点Q也随之在线段DF上运动,使图形M的形状发生改变,但面积始终为10cm2,设EP=xcm,FQ=ycm,解答下列问题:
(1)直接写出当x=3时y的值;
(2)用含x的代数式表示y;
(3)当x取何值是,图形M成为等腰梯形?图形M成为三角形?
(4)直接写出线段PQ在运动过程中所能扫过的区域的面积。
6.如图,四边形ABCD是正方形,△ABE是等边三角形,M为对角线BD(不含B点)上任意一点,将BM绕点B逆时针旋转60°得到BN,连接EN、AM、CM.
⑴ 求证:△AMB≌△ENB;
⑵ ①当M点在何处时,AM+CM的值最小;
②当M点在何处时,AM+BM+CM的值最小,并说明理由;
7.已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.
(1)求证:EG=CG;
(2)将图①中△BEF绕B点逆时针旋转45º,如图②所示,取DF中点G,连接EG,CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.
D
(3)将图①中△BEF绕B点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出什么结论?(均不要求证明)