最新文章专题视频专题问答1问答10问答100问答1000问答2000关键字专题1关键字专题50关键字专题500关键字专题1500TAG最新视频文章推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37视频文章20视频文章30视频文章40视频文章50视频文章60 视频文章70视频文章80视频文章90视频文章100视频文章120视频文章140 视频2关键字专题关键字专题tag2tag3文章专题文章专题2文章索引1文章索引2文章索引3文章索引4文章索引5123456789101112131415文章专题3
当前位置: 首页 - 正文

幂的乘方测试题

来源:动视网 责编:小OO 时间:2025-10-02 07:27:40
文档

幂的乘方测试题

14.1.2整式乘法(—幂的乘方)同步练习一、选择题1.计算(-a2)5+(-a5)2的结果是()A.0B.2a10C.-2a10D.2a72.下列计算的结果正确的是()A.a3·a3=a9B.(a3)2=a5C.a2+a3=a5D.(a2)3=a63.下列各式成立的是()A.(a3)x=(ax)3B.(an)3=an+3C.(a+b)3=a2+b2D.(-a)m=-am4.如果(9n)2=312,则n的值是()A.4B.3C.2D.1二、填空题5.幂的乘方,底数________,指数____
推荐度:
导读14.1.2整式乘法(—幂的乘方)同步练习一、选择题1.计算(-a2)5+(-a5)2的结果是()A.0B.2a10C.-2a10D.2a72.下列计算的结果正确的是()A.a3·a3=a9B.(a3)2=a5C.a2+a3=a5D.(a2)3=a63.下列各式成立的是()A.(a3)x=(ax)3B.(an)3=an+3C.(a+b)3=a2+b2D.(-a)m=-am4.如果(9n)2=312,则n的值是()A.4B.3C.2D.1二、填空题5.幂的乘方,底数________,指数____
14.1.2整式乘法(—幂的乘方)同步练习

一、选择题

1.计算(-a2)5+(-a5)2的结果是(  )

    A.0      B.2a10      C.-2a10      D.2a7

2.下列计算的结果正确的是(  )

    A.a3·a3=a9      B.(a3)2=a5     C.a2+a3=a5     D.(a2)3=a6

3.下列各式成立的是(  )

A.(a3)x=(ax)3     B.(an)3=an+3    C.(a+b)3=a2+b2     D.(-a)m=-am

4.如果(9n)2=312,则n的值是(  )

    A.4      B.3      C.2      D.1

二、填空题

5.幂的乘方,底数________,指数________,用字母表示这个性质是_________.

6.若32×83=2n,则n=________.

7.已知n为正整数,且a=-1,则-(-a2n)2n+3的值为_________.

8.已知a3n=2,则a9n=_________.

三、解答题

9.计算:

①5(a3)4-13(a6)2        ②7x4·x5·(-x)7+5(x4)4-(x8)2

③[(x+y)3]6+[(x+y)9]2    ④[(b-3a)2]n+1·[(3a-b)2n+1]3(n为正整数)

10.若2×8n×16n=222,求n的值.

四、探究题

11.阅读下列解题过程:试比较2100与375的大小.

    解:∵2100=(24)25=1625

         375=(33)25=2725

    而16<27

    ∴2100<375.

请根据上述解答过程解答:比较255、344、433的大小

参:

1.A  2.D  3.A  4.B

5.不变;相乘;(am)n=amn(m、n都是正整数)  

6.14  7.1  8.8  9.①-8a12;②-3x16;③2(x+y)18;④(3a-b)8n+5  

10.n=3  11.255<433<344

人教版七年级上册

期末测试卷

一、选择题(每题3分,共30分)

1.某天的最高气温是8℃,最低气温是-3℃,那么这天的温差是(  )

A.-3℃    B.8℃

C.-8℃    D.11℃

2.下列立体图形中,从上面看能得到正方形的是(  )

3.下列方程是一元一次方程的是(  )

A.x-y=6    B.x-2=x

C.x2+3x=1    D.1+x=3

4.今年某市约有108 000名应届初中毕业生参加中考,108 000用科学记数法表示为(  )

A.0.108×106    B.10.8×104

C.1.08×106    D.1.08×105

5.下列计算正确的是(  )

A.3x2-x2=3    B.3a2+2a3=5a5

C.3+x=3x    D.-0.25ab+ba=0

6.已知ax=ay,下列各式中一定成立的是(  )

A.x=y    B.ax+1=ay-1

C.ax=-ay  D.3-ax=3-ay

7.某商品每件标价为150元,若按标价打8折后,再降价10元销售,仍获利10%,则该商品每件的进价为(  )

A.100元    B.105元

C.110元    D.120元

8.如果一个角的余角是50°,那么这个角的补角的度数是(  )

A.130°    B.40°

C.90°    D.140°

9.如图,C,D是线段AB上的两点,点E是AC的中点,点F是BD的中点,EF=m,CD=n,则AB的长是(  )

A.m-n    B.m+n

C.2m-n    D.2m+n

10.下列结论:

①若a+b+c=0,且abc≠0,则=-;

②若a+b+c=0,且a≠0,则x=1一定是方程ax+b+c=0的解;

③若a+b+c=0,且abc≠0,则abc>0;

④若|a|>|b|,则>0.

其中正确的结论是(  )

A.①②③    B.①②④

C.②③④    D.①②③④

二、填空题(每题3分,共24分)

11.-的相反数是________,-的倒数的绝对值是________.

12.若-xy3与2xm-2yn+5是同类项,则nm=________.

13.若关于x的方程2x+a=1与方程3x-1=2x+2的解相同,则a的值为________.

14.一个角的余角为70°28′47″,那么这个角等于____________.

15.下列说法:①两点确定一条直线;②两点之间,线段最短;③若∠AOC=∠AOB,则射线OC是∠AOB的平分线;④连接两点之间的线段叫做这两点间的距离;⑤学校在小明家南偏东25°方向上,则小明家在学校北偏西25°方向上,其中正确的有________个.

16.在某月的月历上,用一个正方形圈出2×2个数,若所圈4个数的和为44,则这4个日期中左上角的日期数值为________.

17.规定一种新运算:a△b=a·b-2a-b+1,如3△4=3×4-2×3-4+1=3.请比较大小:(-3)△4________4△(-3)(填“>”“=”或“<”).

18.如图是小明用火柴棒搭的1条“金鱼”、2条“金鱼”、3条“金鱼”……则搭n条“金鱼”需要火柴棒__________根.

三、解答题(19,20题每题8分,21~23题每题6分,26题12分,其余每题10分,共66分)

19.计算:

(1)-4+2×|-3|-(-5);

(2)-3×(-4)+(-2)3÷(-2)2-(-1)2 018.

20.解方程:

(1)4-3(2-x)=5x;

(2)-1=-.

21.先化简,再求值:2(x2y+xy)-3(x2y-xy)-4x2y,其中x=1,y=-1.

22.有理数b在数轴上对应点的位置如图所示,试化简|1-3b|+2|2+b|-|3b-2|.

23.如图①是一些小正方体所搭立体图形从上面看得到的图形,方格中的数字表示该位置的小正方体的个数.请在如图②所示的方格纸中分别画出这个立体图形从正面看和从左面看得到的图形.

24.已知点O是直线AB上的一点,∠COE=90°,OF是∠AOE的平分线.

(1)当点C,E,F在直线AB的同侧时(如图①所示),试说明∠BOE=2∠COF.

(2)当点C与点E,F在直线AB的两侧时(如图②所示),(1)中的结论是否仍然成立?请给出你的结论,并说明理由.

25.为鼓励居民节约用电,某市电力公司规定了电费分段计算的方法:每月用电不超过100度,按每度电0.50元计算;每月用电超过100度,超出部分按每度电0.65元计算.设每月用电x度.

(1)当0≤x≤100时,电费为________元;当x>100时,电费为____________元.(用含x的整式表示)

(2)某用户为了解日用电量,记录了9月前几天的电表读数.

日期9月1日

9月2日

9月3日

9月4日

9月5日

9月6日

9月7日

电表读数/度

123130137145153159165
该用户9月的电费约为多少元?

(3)该用户采取了节电措施后,10月平均每度电费0.55元,那么该用户10月用电多少度?

26.如图,O为数轴的原点,A,B为数轴上的两点,点A表示的数为-30,点B表示的数为100.

(1)A,B两点间的距离是________.

(2)若点C也是数轴上的点,点C到点B的距离是点C到原点O的距离的3倍,求点C表示的数.

(3)若电子蚂蚁P从点B出发,以6个单位长度/s的速度向左运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向左运动,设两只电子蚂蚁同时运动到了数轴上的点D,那么点D表示的数是多少?

(4)若电子蚂蚁P从点B出发,以8个单位长度/s的速度向右运动,同时另一只电子蚂蚁Q恰好从点A出发,以4个单位长度/s的速度向右运动.设数轴上的点N到原点O的距离等于点P到原点O的距离的一半(点N在原点右侧),有下面两个结论:①ON+AQ的值不变;②ON-AQ的值不变,请判断哪个结论正确,并求出正确结论的值.

(第26题)

答案

一、1.D 2.A 3.D 4.D 5.D 6.D

7.A 8.D 9.C 10.B

二、11.;5 12.-8 13.-5 

14.19°31′13″ 15.3 16.7 

17.> 18.(6n+2)

三、19.解:(1)原式=-4+2×3+5=-4+6+5=7;

(2)原式=12+(-8)÷4-1=12-2-1=9.

20.解:(1)去括号,得4-6+3x=5x.

移项、合并同类项,得-2x=2.

系数化为1,得x=-1.

(2)去分母,得3(x-2)-6=2(x+1)-(x+8).

去括号,得3x-6-6=2x+2-x-8.

移项、合并同类项,得2x=6.

系数化为1,得x=3.

21.解:原式=2x2y+2xy-3x2y+3xy-4x2y=(2x2y-3x2y-4x2y)+(2xy+3xy)=-5x2y+5xy.

当x=1,y=-1时,

原式=-5x2y+5xy=-5×12×(-1)+5×1×(-1)=5-5=0.

22.解:由题图可知-3所以1-3b>0,2+b<0,3b-2<0.

所以原式=1-3b-2(2+b)+(3b-2)=1-3b-4-2b+3b-2=-2b-5.

23.解:如图所示.

24.解:(1)设∠COF=α,

则∠EOF=90°-α.

因为OF是∠AOE的平分线,

所以∠AOE=2∠EOF=2(90°-α)=180°-2α.

所以∠BOE=180°-∠AOE=180°-(180°-2α)=2α.

所以∠BOE=2∠COF.

(2)∠BOE=2∠COF仍成立.

理由:设∠AOC=β,

则∠AOE=90°-β,

又因为OF是∠AOE的平分线,

所以∠AOF=.

所以∠BOE=180°-∠AOE=180°-(90°-β)=90°+β,∠COF=∠AOF+∠AOC=+β=(90°+β).

所以∠BOE=2∠COF.

25.解:(1)0.5x;(0.65x-15)

(2)(165-123)÷6×30=210(度),

210×0.65-15=121.5(元).

答:该用户9月的电费约为121.5元.

(3)设10月的用电量为a度.

根据题意,得0.65a-15=0.55a,

解得a=150.

答:该用户10月用电150度.

26.解:(1)130

(2)若点C在原点右边,则点C表示的数为100÷(3+1)=25;

若点C在原点左边,则点C表示的数为-[100÷(3-1)]=-50.

故点C表示的数为-50或25.

(3)设从出发到同时运动到点D经过的时间为t s,则6t-4t=130,

解得t=65.

65×4=260,260+30=290,

所以点D表示的数为-290.

(4)ON-AQ的值不变.

设运动时间为m s,

则PO=100+8m,AQ=4m.

由题意知N为PO的中点,

得ON=PO=50+4m,

所以ON+AQ=50+4m+4m=50+8m,

ON-AQ=50+4m-4m=50.

故ON-AQ的值不变,这个值为50.

文档

幂的乘方测试题

14.1.2整式乘法(—幂的乘方)同步练习一、选择题1.计算(-a2)5+(-a5)2的结果是()A.0B.2a10C.-2a10D.2a72.下列计算的结果正确的是()A.a3·a3=a9B.(a3)2=a5C.a2+a3=a5D.(a2)3=a63.下列各式成立的是()A.(a3)x=(ax)3B.(an)3=an+3C.(a+b)3=a2+b2D.(-a)m=-am4.如果(9n)2=312,则n的值是()A.4B.3C.2D.1二、填空题5.幂的乘方,底数________,指数____
推荐度:
  • 热门焦点

最新推荐

猜你喜欢

热门推荐

专题
Top