最新文章专题视频专题问答1问答10问答100问答1000问答2000关键字专题1关键字专题50关键字专题500关键字专题1500TAG最新视频文章推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37视频文章20视频文章30视频文章40视频文章50视频文章60 视频文章70视频文章80视频文章90视频文章100视频文章120视频文章140 视频2关键字专题关键字专题tag2tag3文章专题文章专题2文章索引1文章索引2文章索引3文章索引4文章索引5123456789101112131415文章专题3
当前位置: 首页 - 正文

2017高考数学浙江试卷及答案

来源:动视网 责编:小OO 时间:2025-10-02 10:52:33
文档

2017高考数学浙江试卷及答案

2017年浙江省高考数学试卷及解析一、选择题(共10小题,每小题5分,满分50分)1.(5分)已知集合P={x|﹣1<x<1},Q={x|0<x<2},那么P∪Q=()A.(﹣1,2)B.(0,1)C.(﹣1,0)D.(1,2)2.(5分)椭圆+=1的离心率是()A.B.C.D.3.(5分)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm2)是()A.+1B.+3C.+1D.+34.(5分)若x、y满足约束条件,则z=x+2y的取值范围是()A.[0,6]B.[0,4]C.
推荐度:
导读2017年浙江省高考数学试卷及解析一、选择题(共10小题,每小题5分,满分50分)1.(5分)已知集合P={x|﹣1<x<1},Q={x|0<x<2},那么P∪Q=()A.(﹣1,2)B.(0,1)C.(﹣1,0)D.(1,2)2.(5分)椭圆+=1的离心率是()A.B.C.D.3.(5分)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm2)是()A.+1B.+3C.+1D.+34.(5分)若x、y满足约束条件,则z=x+2y的取值范围是()A.[0,6]B.[0,4]C.
2017年浙江省高考数学试卷及解析

一、选择题(共10小题,每小题5分,满分50分)

1.(5分)已知集合P={x|﹣1<x<1},Q={x|0<x<2},那么P∪Q=()A.(﹣1,2)B.(0,1) C.(﹣1,0)D.(1,2)

2.(5分)椭圆+=1的离心率是()

A.B.C.D.

3.(5分)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm2)是()

A.+1 B.+3 C.+1 D.+3

4.(5分)若x、y满足约束条件,则z=x+2y的取值范围是()

A.[0,6]B.[0,4]C.[6,+∞)D.[4,+∞)

5.(5分)若函数f(x)=x2+ax+b在区间[0,1]上的最大值是M,最小值是m,则M﹣m()

A.与a有关,且与b有关B.与a有关,但与b无关

C.与a无关,且与b无关D.与a无关,但与b有关

6.(5分)已知等差数列{a n}的公差为d,前n项和为S n,则“d>0”是“S4+S6>2S5”的()

A.充分不必要条件 B.必要不充分条件

C.充分必要条件D.既不充分也不必要条件7.(5分)函数y=f(x)的导函数y=f′(x)的图象如图所示,则函数y=f(x)的图象可能是()

A.B.C.D.

8.(5分)已知随机变量ξi满足P(ξi=1)=p i,P(ξi=0)=1﹣p i,i=1,2.若0<p1<p2<,则()

A.E(ξ1)<E(ξ2),D(ξ1)<D(ξ2)B.E(ξ1)<E(ξ2),D(ξ1)>D(ξ2)C.E(ξ1)>E(ξ2),D(ξ1)<D(ξ2)D.E(ξ1)>E(ξ2),D(ξ1)>D(ξ2)9.(5分)如图,已知正四面体D﹣ABC(所有棱长均相等的三棱锥),P、Q、R 分别为AB、BC、CA上的点,AP=PB,==2,分别记二面角D﹣PR﹣Q,D﹣PQ﹣R,D﹣QR﹣P的平面角为α、β、γ,则()

A.γ<α<β B.α<γ<β C.α<β<γ D.β<γ<α

10.(5分)如图,已知平面四边形ABCD,AB⊥BC,AB=BC=AD=2,CD=3,AC与BD交于点O,记I1=•,I2=•,I3=•,则()

A.I1<I2<I3B.I1<I3<I2C.I3<I1<I2D.I2<I1<I3二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分11.(4分)我国古代数学家刘徽创立的“割圆术”可以估算圆周率π,理论上能把π的值计算到任意精度,祖冲之继承并发展了“割圆术”,将π的值精确到小数点后七位,其结果领先世界一千多年,“割圆术”的第一步是计算单位圆内接正六边形的面积S6,S6=.

12.(6分)已知a、b∈R,(a+bi)2=3+4i(i是虚数单位),则a2+b2=,ab=.

13.(6分)已知多项式(x+1)3(x+2)2=x5+a1x4+a2x3+a3x2+a4x+a5,则a4=,a5=.

14.(6分)已知△ABC,AB=AC=4,BC=2,点D为AB延长线上一点,BD=2,连结CD,则△BDC的面积是,com∠BDC=.

15.(6分)已知向量、满足||=1,||=2,则|+|+|﹣|的最小值是,最大值是.

16.(4分)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,共有种不同的选法.(用数字作答)

17.(4分)已知a∈R,函数f(x)=|x+﹣a|+a在区间[1,4]上的最大值是5,则a的取值范围是.

三、解答题(共5小题,满分74分)

18.(14分)已知函数f(x)=sin2x﹣cos2x﹣2sinx cosx(x∈R).

(Ⅰ)求f()的值.

(Ⅱ)求f(x)的最小正周期及单调递增区间.

19.(15分)如图,已知四棱锥P﹣ABCD,△PAD是以AD为斜边的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E为PD的中点.

(Ⅰ)证明:CE∥平面PAB;

(Ⅱ)求直线CE与平面PBC所成角的正弦值.

20.(15分)已知函数f(x)=(x﹣)e﹣x(x≥).

(1)求f(x)的导函数;

(2)求f(x)在区间[,+∞)上的取值范围.

21.(15分)如图,已知抛物线x2=y,点A(﹣,),B(,),抛物线上的点P(x,y)(﹣<x<),过点B作直线AP的垂线,垂足为Q.

(Ⅰ)求直线AP斜率的取值范围;

(Ⅱ)求|PA|•|PQ|的最大值.

22.(15分)已知数列{x n}满足:x1=1,x n=x n+1+ln(1+x n+1)(n∈N*),证明:当n ∈N*时,

<x n;

(Ⅰ)0<x n

+1

﹣x n≤;

(Ⅱ)2x n

+1

(Ⅲ)≤x n≤.2017年浙江省高考数学试卷

参与试题解析

一、选择题(共10小题,每小题5分,满分50分)

1.(5分)已知集合P={x|﹣1<x<1},Q={x|0<x<2},那么P∪Q=()A.(﹣1,2)B.(0,1) C.(﹣1,0)D.(1,2)

【分析】直接利用并集的运算法则化简求解即可.

【解答】解:集合P={x|﹣1<x<1},Q={x|0<x<2},

那么P∪Q={x|﹣1<x<2}=(﹣1,2).

故选:A.

【点评】本题考查集合的基本运算,并集的求法,考查计算能力.

2.(5分)椭圆+=1的离心率是()

A.B.C.D.

【分析】直接利用椭圆的简单性质求解即可.

【解答】解:椭圆+=1,可得a=3,b=2,则c==,

所以椭圆的离心率为:=.

故选:B.

【点评】本题考查椭圆的简单性质的应用,考查计算能力.

3.(5分)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm2)是()

A.+1 B.+3 C.+1 D.+3

【分析】根据几何体的三视图,该几何体是圆锥的一半和一个三棱锥组成,画出图形,结合图中数据即可求出它的体积.

【解答】解:由几何的三视图可知,该几何体是圆锥的一半和一个三棱锥组成,圆锥的底面圆的半径为1,三棱锥的底面是底边长2的等腰直角三角形,圆锥的高和棱锥的高相等均为3,

故该几何体的体积为××π×12×3+××××3=+1,

故选:A

【点评】本题考查了空间几何体三视图的应用问题,解题的关键是根据三视图得出原几何体的结构特征,是基础题目.

4.(5分)若x、y满足约束条件,则z=x+2y的取值范围是()

A.[0,6]B.[0,4]C.[6,+∞)D.[4,+∞)

【分析】画出约束条件的可行域,利用目标函数的最优解求解即可.

【解答】解:x、y满足约束条件,表示的可行域如图:

目标函数z=x+2y经过坐标原点时,函数取得最小值,

经过A时,目标函数取得最大值,

由解得A(0,3),

目标函数的直线为:0,最大值为:36

目标函数的范围是[0,6].

故选:A.

【点评】本题考查线性规划的简单应用,画出可行域判断目标函数的最优解是解题的关键.

5.(5分)若函数f(x)=x2+ax+b在区间[0,1]上的最大值是M,最小值是m,则M﹣m()

A.与a有关,且与b有关B.与a有关,但与b无关

C.与a无关,且与b无关D.与a无关,但与b有关

【分析】结合二次函数的图象和性质,分类讨论不同情况下M﹣m的取值与a,b的关系,综合可得答案.

【解答】解:函数f(x)=x2+ax+b的图象是开口朝上且以直线x=﹣为对称轴的抛物线,

①当﹣>1或﹣<0,即a<﹣2,或a>0时,

函数f(x)在区间[0,1]上单调,

此时M﹣m=|f(1)﹣f(0)|=|a|,

故M﹣m的值与a有关,与b无关②当≤﹣≤1,即﹣2≤a≤﹣1时,

函数f(x)在区间[0,﹣]上递减,在[﹣,1]上递增,

且f(0)>f(1),

此时M﹣m=f(0)﹣f(﹣)=,

故M﹣m的值与a有关,与b无关

③当0≤﹣<,即﹣1<a≤0时,

函数f(x)在区间[0,﹣]上递减,在[﹣,1]上递增,

且f(0)<f(1),

此时M﹣m=f(0)﹣f(﹣)=a﹣,

故M﹣m的值与a有关,与b无关

综上可得:M﹣m的值与a有关,与b无关

故选:B

【点评】本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键.

6.(5分)已知等差数列{a n}的公差为d,前n项和为S n,则“d>0”是“S4+S6>2S5”的()

A.充分不必要条件 B.必要不充分条件

C.充分必要条件D.既不充分也不必要条件

【分析】根据等差数列的求和公式和S4+S6>2S5,可以得到d>0,根据充分必要条件的定义即可判断.

【解答】解:∵S4+S6>2S5,

∴4a1+6d+6a1+15d>2(5a1+10d),

∴21d>20d,

∴d>0,

故“d>0”是“S4+S6>2S5”充分必要条件,

故选:C【点评】本题借助等差数列的求和公式考查了充分必要条件,属于基础题

7.(5分)函数y=f(x)的导函数y=f′(x)的图象如图所示,则函数y=f(x)的图象可能是()

A.B.C.D.

【分析】根据导数与函数单调性的关系,当f′(x)<0时,函数f(x)单调递减,当f′(x)>0时,函数f(x)单调递增,根据函数图象,即可判断函数的单调性,然后根据函数极值的判断,即可判断函数极值的位置,即可求得函数y=f(x)的图象可能

【解答】解:由当f′(x)<0时,函数f(x)单调递减,当f′(x)>0时,函数f(x)单调递增,

则由导函数y=f′(x)的图象可知:f(x)先单调递减,再单调递增,然后单调递减,最后单调递增,排除A,C,

且第二个拐点(即函数的极大值点)在x轴上的右侧,排除B,

故选D

【点评】本题考查导数的应用,考查导数与函数单调性的关系,考查函数极值的判断,考查数形结合思想,属于基础题.

8.(5分)已知随机变量ξi满足P(ξi=1)=p i,P(ξi=0)=1﹣p i,i=1,2.若0<p1<p2<,则()

A.E(ξ1)<E(ξ2),D(ξ1)<D(ξ2)B.E(ξ1)<E(ξ2),D(ξ1)>D(ξ2)C.E(ξ1)>E(ξ2),D(ξ1)<D(ξ2)D.E(ξ1)>E(ξ2),D(ξ1)>D(ξ2)【分析】由已知得0<p1<p2<,<1﹣p2<1﹣p1<1,求出E(ξ1)=p1,E(ξ2)=p2,从而求出D(ξ1),D(ξ2),由此能求出结果.

【解答】解:∵随机变量ξi满足P(ξi=1)=p i,P(ξi=0)=1﹣p i,i=1,2,…,

0<p1<p2<,

∴<1﹣p2<1﹣p1<1,

E(ξ1)=1×p1+0×(1﹣p1)=p1,

E(ξ2)=1×p2+0×(1﹣p2)=p2,

D(ξ1)=(1﹣p1)2p1+(0﹣p1)2(1﹣p1)=,

D(ξ2)=(1﹣p2)2p2+(0﹣p2)2(1﹣p2)=,

D(ξ1)﹣D(ξ2)=p1﹣p12﹣()=(p2﹣p1)(p1+p2﹣1)<0,

∴E(ξ1)<E(ξ2),D(ξ1)<D(ξ2).

故选:A.

【点评】本题考查离散型随机变量的数学期望和方差等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是中档题.

9.(5分)如图,已知正四面体D﹣ABC(所有棱长均相等的三棱锥),P、Q、R 分别为AB、BC、CA上的点,AP=PB,==2,分别记二面角D﹣PR﹣Q,D﹣PQ﹣R,D﹣QR﹣P的平面角为α、β、γ,则()

A.γ<α<β B.α<γ<β C.α<β<γ D.β<γ<α

【分析】解法一:如图所示,建立空间直角坐标系.设底面△ABC的中心为O.不妨设OP=3.则O(0,0,0),P(0,﹣3,0),C(0,﹣6,0),D(0,0,6),

Q,R,利用法向量的夹角公式即可得出二面角.

解法二:如图所示,连接OD,OQ,OR,过点O发布作垂线:OE⊥DR,OF⊥DQ,OG⊥QR,垂足分别为E,F,G,连接PE,PF,PG.设OP=h.可得

cosα===.同理可得:cosβ==,

cosγ==.由已知可得:OE>OG>OF.即可得出.

【解答】解法一:如图所示,建立空间直角坐标系.设底面△ABC的中心为O.不妨设OP=3.则O(0,0,0),P(0,﹣3,0),C(0,﹣6,0),D(0,0,6),

Q,R,

=,=(0,3,6),=(,5,0),=,

=.

设平面PDR的法向量为=(x,y,z),则,可得,

可得=,取平面ABC的法向量=(0,0,1).

则cos==,取α=arccos.

同理可得:β=arccos.γ=arccos.

∵>>.

∴α<γ<β.

解法二:如图所示,连接OD,OQ,OR,过点O发布作垂线:OE⊥DR,OF⊥DQ,OG⊥QR,垂足分别为E,F,G,连接PE,PF,PG.

设OP=h.

则cosα===.

同理可得:cosβ==,cosγ==.

由已知可得:OE>OG>OF.

∴cosα>cosγ>cosβ,α,β,γ为锐角.∴α<γ<β.

故选:B.

【点评】本题考查了空间角、空间位置关系、正四面体的性质、法向量的夹角公式,考查了推理能力与计算能力,属于难题.

10.(5分)如图,已知平面四边形ABCD,AB⊥BC,AB=BC=AD=2,CD=3,AC与BD交于点O,记I1=•,I2=•,I3=•,则()

A.I1<I2<I3B.I1<I3<I2C.I3<I1<I2D.I2<I1<I3

【分析】根据向量数量积的定义结合图象边角关系进行判断即可.

【解答】解:∵AB⊥BC,AB=BC=AD=2,CD=3,

∴AC=2,

∴∠AOB=∠COD>90°,

由图象知OA<OC,OB<OD,

∴0>•>•,•>0,

即I3<I1<I2,

故选:C.

【点评】本题主要考查平面向量数量积的应用,根据图象结合平面向量数量积的定义是解决本题的关键.

二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分11.(4分)我国古代数学家刘徽创立的“割圆术”可以估算圆周率π,理论上能把π的值计算到任意精度,祖冲之继承并发展了“割圆术”,将π的值精确到小数点后七位,其结果领先世界一千多年,“割圆术”的第一步是计算单位圆内接正六边

形的面积S6,S6=.

【分析】根据题意画出图形,结合图形求出单位圆的内接正六边形的面积.【解答】解:如图所示,

单位圆的半径为1,则其内接正六边形ABCDEF中,

△AOB是边长为1的正三角形,

所以正六边形ABCDEF的面积为

S6=6××1×1×sin60°=.

故答案为:.

【点评】本题考查了已知圆的半径求其内接正六边形面积的应用问题,是基础题.

12.(6分)已知a、b∈R,(a+bi)2=3+4i(i是虚数单位),则a2+b2=5,ab=2.

【分析】a、b∈R,(a+bi)2=3+4i(i是虚数单位),可得3+4i=a2﹣b2+2abi,可得3=a2﹣b2,2ab=4,解出即可得出.

【解答】解:a、b∈R,(a+bi)2=3+4i(i是虚数单位),

∴3+4i=a2﹣b2+2abi,

∴3=a2﹣b2,2ab=4,

解得ab=2,.

则a2+b2=5,

故答案为:5,2.

【点评】本题考查了复数的运算法则、复数的相等、方程的解法,考查了推理能力与计算能力,属于基础题.

13.(6分)已知多项式(x+1)3(x+2)2=x5+a1x4+a2x3+a3x2+a4x+a5,则a4=16,a5=4.

【分析】利用二项式定理的展开式,求解x的系数就是两个多项式的展开式中x 与常数乘积之和,a5就是常数的乘积.

【解答】解:多项式(x+1)3(x+2)2=x5+a1x4+a2x3+a3x2+a4x+a5,

(x+1)3中,x的系数是:3,常数是1;(x+2)2中x的系数是4,常数是4,

a4=3×4+1×4=16;

a5=1×4=4.

故答案为:16;4.

【点评】本题考查二项式定理的应用,考查计算能力,是基础题.

14.(6分)已知△ABC,AB=AC=4,BC=2,点D为AB延长线上一点,BD=2,连

结CD,则△BDC的面积是,com∠BDC=.

,再根据S 【分析】如图,取BC得中点E,根据勾股定理求出AE,再求出S

△ABC

=S△ABC即可求出,根据等腰三角形的性质和二倍角公式即可求出

△BDC

【解答】解:如图,取BC得中点E,∵AB=AC=4,BC=2,

∴BE=BC=1,AE⊥BC,

∴AE==,

=BC•AE=×2×=,

∴S

△ABC

∵BD=2,

=S△ABC=,

∴S

△BDC

∵BC=BD=2,

∴∠BDC=∠BCD,

∴∠ABE=2∠BDC

在Rt△ABE中,

∵cos∠ABE==,

∴cos∠ABE=2cos2∠BDC﹣1=,

∴cos∠BDC=,

故答案为:,

【点评】本题考查了解三角形的有关知识,关键是转化,属于基础题

15.(6分)已知向量、满足||=1,||=2,则|+|+|﹣|的最小值是4,

最大值是.

【分析】通过记∠AOB=α(0≤α≤π),利用余弦定理可可知|+|=、|﹣|=,进而换元,转化为线性规划问题,计算即得结论.【解答】解:记∠AOB=α,则0≤α≤π,如图,

由余弦定理可得:

|+|=,

|﹣|=,

令x=,y=,

则x2+y2=10(x、y≥1),其图象为一段圆弧MN,如图,

令z=x+y,则y=﹣x+z,

则直线y=﹣x+z过M、N时z最小为z min=1+3=3+1=4,

当直线y=﹣x+z与圆弧MN相切时z最大,

由平面几何知识易知z max即为原点到切线的距离的倍,

也就是圆弧MN所在圆的半径的倍,

所以z max=×=.

综上所述,|+|+|﹣|的最小值是4,最大值是.

故答案为:4、.

【点评】本题考查函数的最值及其几何意义,考查数形结合能力,考查运算求解能力,涉及余弦定理、线性规划等基础知识,注意解题方法的积累,属于中档题.

16.(4分)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,共有660种不同的选法.(用数字作答)

【分析】由题意分两类选1女3男或选2女2男,再计算即可

【解答】解:第一类,先选1女3男,有C63C21=40种,这4人选2人作为队长和副队有A42=12种,故有40×12=480种,

第二类,先选2女2男,有C62C22=15种,这4人选2人作为队长和副队有A42=12种,故有15×12=180种,

根据分类计数原理共有480+180=660种,

故答案为:660

【点评】本题考查了分类计数原理和分步计数原理,属于中档题

17.(4分)已知a∈R,函数f(x)=|x+﹣a|+a在区间[1,4]上的最大值是5,则a的取值范围是(﹣∞,).

【分析】通过转化可知|x+﹣a|+a≤5且a≤5,进而解绝对值不等式可知2a﹣5≤x+≤5,进而计算可得结论.

【解答】解:由题可知|x+﹣a|+a≤5,即|x+﹣a|≤5﹣a,所以a≤5,

又因为|x+﹣a|≤5﹣a,

所以a﹣5≤x+﹣a≤5﹣a,

所以2a﹣5≤x+≤5,

又因为1≤x≤4,4≤x+≤5,

所以2a﹣5≤4,解得a≤,

故答案为:(﹣∞,).

【点评】本题考查函数的最值,考查绝对值函数,考查转化与化归思想,注意解题方法的积累,属于中档题.

三、解答题(共5小题,满分74分)18.(14分)已知函数f(x)=sin2x﹣cos2x﹣2sinx cosx(x∈R).

(Ⅰ)求f()的值.

(Ⅱ)求f(x)的最小正周期及单调递增区间.

【分析】利用二倍角公式及辅助角公式化简函数的解析式,

(Ⅰ)代入可得:f()的值.

(Ⅱ)根据正弦型函数的图象和性质,可得f(x)的最小正周期及单调递增区间【解答】解:∵函数f(x)=sin2x﹣cos2x﹣2sinx cosx=﹣sin2x﹣cos2x=2sin (2x+)

(Ⅰ)f()=2sin(2×+)=2sin=2,

(Ⅱ)∵ω=2,故T=π,

即f(x)的最小正周期为π,

由2x+∈[﹣+2kπ,+2kπ],k∈Z得:

x∈[﹣+kπ,﹣+kπ],k∈Z,

故f(x)的单调递增区间为[﹣+kπ,﹣+kπ],k∈Z.

【点评】本题考查的知识点是三角函数的化简求值,三角函数的周期性,三角函数的单调区间,难度中档.

19.(15分)如图,已知四棱锥P﹣ABCD,△PAD是以AD为斜边的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E为PD的中点.

(Ⅰ)证明:CE∥平面PAB;

(Ⅱ)求直线CE与平面PBC所成角的正弦值.

【分析】(Ⅰ)以D为原点,DA为x轴,DC为y轴,过D作平面ABCD的垂线

为z轴,建立空间直角系,利用向量法能证明CE∥平面PAB.

(Ⅱ)求出平面PBC的法向量和,利用向量法能求出直线CE与平面PBC所成角的正弦值.

【解答】证明:(Ⅰ)∵四棱锥P﹣ABCD,△PAD是以AD为斜边的等腰直角三角形,

BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E为PD的中点,

∴以D为原点,DA为x轴,DC为y轴,过D作平面ABCD的垂线为z轴,建立空间直角系,

设PC=AD=2DC=2CB=2,

则C(0,1,0),D(0,0,0),P(1,0,1),E(),A(2,0,0),B(1,1,0),

=(),=(1,0,﹣1),=(0,1,﹣1),

设平面PAB的法向量=(x,y,z),

则,取z=1,得=(1,1,1),

∵==0,CE⊄平面PAB,

∴CE∥平面PAB.

解:(Ⅱ)=(﹣1,1,﹣1),设平面PBC的法向量=(a,b,c),

则,取b=1,得=(0,1,1),

设直线CE与平面PBC所成角为θ,

则sinθ=|cos<>|===.

∴直线CE与平面PBC所成角的正弦值为.

【点评】本题考查线面平行的证明,考查线面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是中档题.

20.(15分)已知函数f(x)=(x﹣)e﹣x(x≥).

(1)求f(x)的导函数;

(2)求f(x)在区间[,+∞)上的取值范围.

【分析】(1)求出f(x)的导数,注意运用复合函数的求导法则,即可得到所求;(2)求出f(x)的导数,求得极值点,讨论当<x<1时,当1<x<时,当x>时,f(x)的单调性,判断f(x)≥0,计算f(),f(1),f(),即可得到所求取值范围.

【解答】解:(1)函数f(x)=(x﹣)e﹣x(x≥),

导数f′(x)=(1﹣••2)e﹣x﹣(x﹣)e﹣x

=(1﹣x+)e﹣x=(1﹣x)(1﹣)e﹣x;

(2)由f(x)的导数f′(x)=(1﹣x)(1﹣)e﹣x,

可得f′(x)=0时,x=1或,

当<x<1时,f′(x)<0,f(x)递减;

当1<x<时,f′(x)>0,f(x)递增;当x>时,f′(x)<0,f(x)递减,

且x≥⇔x2≥2x﹣1⇔(x﹣1)2≥0,

则f(x)≥0.

由f()=e,f(1)=0,f()=e,

即有f(x)的最大值为e,最小值为f(1)=0.

则f(x)在区间[,+∞)上的取值范围是[0,e].

【点评】本题考查导数的运用:求单调区间和极值、最值,考查化简整理的运算能力,正确求导是解题的关键,属于中档题.

21.(15分)如图,已知抛物线x2=y,点A(﹣,),B(,),抛物线上的点P(x,y)(﹣<x<),过点B作直线AP的垂线,垂足为Q.

(Ⅰ)求直线AP斜率的取值范围;

(Ⅱ)求|PA|•|PQ|的最大值.

【分析】(Ⅰ)通过点P在抛物线上可设P(x,x2),利用斜率公式结合﹣<x <可得结论;

(Ⅱ)通过(I)知P(x,x2)、﹣<x<,设直线AP的斜率为k,联立直线AP、BP方程可知Q点坐标,进而可用k表示出、,计算可知|PA|•|PQ|=(1+k)3(1﹣k),通过令f(x)=(1+x)3(1﹣x),﹣1<x<1,求导结合单调性可得结论.【解答】解:(Ⅰ)由题可知P(x,x2),﹣<x<,

所以k AP==x﹣∈(﹣1,1),

故直线AP斜率的取值范围是:(﹣1,1);

(Ⅱ)由(I)知P(x,x2),﹣<x<,

所以=(﹣﹣x,﹣x2),

设直线AP的斜率为k,则AP:y=kx+k+,BP:y=﹣x++,

联立直线AP、BP方程可知Q(,),

故=(,),

又因为=(﹣1﹣k,﹣k2﹣k),

故﹣|PA|•|PQ|=•=+=(1+k)3(k﹣1),

所以|PA|•|PQ|=(1+k)3(1﹣k),

令f(x)=(1+x)3(1﹣x),﹣1<x<1,

则f′(x)=(1+x)2(2﹣4x)=﹣2(1+x)2(2x﹣1),

由于当﹣1<x<﹣时f′(x)>0,当<x<1时f′(x)<0,

故f(x)max=f()=,即|PA|•|PQ|的最大值为.

【点评】本题考查圆锥曲线的最值问题,考查运算求解能力,考查函数思想,注意解题方法的积累,属于中档题.

22.(15分)已知数列{x n}满足:x1=1,x n=x n+1+ln(1+x n+1)(n∈N*),证明:当n ∈N*时,

(Ⅰ)0<x n

<x n;

+1

﹣x n≤;

(Ⅱ)2x n

+1

【分析】(Ⅰ)用数学归纳法即可证明,

(Ⅱ)构造函数,利用导数判断函数的单调性,把数列问题转化为函数问题,即可证明,

(Ⅲ)由≥2x n

+1

﹣x n得﹣≥2(﹣)>0,继续放缩即可证明【解答】解:(Ⅰ)用数学归纳法证明:x n>0,

当n=1时,x1=1>0,成立,

假设当n=k时成立,则x k>0,

那么n=k+1时,若x k

+1

<0,则0<x k=x k+1+ln(1+x k+1)<0,矛盾,

故x n

+1

>0,

因此x n>0,(n∈N*)

∴x n=x n+1+ln(1+x n+1)>x n+1,

因此0<x n

+1

<x n(n∈N*),

(Ⅱ)由x n=x n+1+ln(1+x n+1)得x n x n+1﹣4x n+1+2x n=x n+12﹣2x n+1+(x n+1+2)ln(1+x n+1),记函数f(x)=x2﹣2x+(x+2)ln(1+x),x≥0

∴f′(x)=+ln(1+x)>0,

∴f(x)在(0,+∞)上单调递增,

∴f(x)≥f(0)=0,

因此x n

+12﹣2x

n+1

+(x n

+1

+2)ln(1+x n

+1

)≥0,

故2x n

+1

﹣x n≤;

(Ⅲ)∵x n=x n+1+ln(1+x n+1)≤x n+1+x n+1=2x n+1,

∴x n≥,

由≥2x n

+1

﹣x n得﹣≥2(﹣)>0,∴﹣≥2(﹣)≥…≥2n﹣1(﹣)=2n﹣2,∴x n≤,

【点评】本题考查了数列的概念,递推关系,数列的函数的特征,导数和函数的单调性的关系,不等式的证明,考查了推理论证能力,分析解决问题的能力,运算能力,放缩能力,运算能力,属于难题

文档

2017高考数学浙江试卷及答案

2017年浙江省高考数学试卷及解析一、选择题(共10小题,每小题5分,满分50分)1.(5分)已知集合P={x|﹣1<x<1},Q={x|0<x<2},那么P∪Q=()A.(﹣1,2)B.(0,1)C.(﹣1,0)D.(1,2)2.(5分)椭圆+=1的离心率是()A.B.C.D.3.(5分)某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位:cm2)是()A.+1B.+3C.+1D.+34.(5分)若x、y满足约束条件,则z=x+2y的取值范围是()A.[0,6]B.[0,4]C.
推荐度:
  • 热门焦点

最新推荐

猜你喜欢

热门推荐

专题
Top