最新文章专题视频专题问答1问答10问答100问答1000问答2000关键字专题1关键字专题50关键字专题500关键字专题1500TAG最新视频文章推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37视频文章20视频文章30视频文章40视频文章50视频文章60 视频文章70视频文章80视频文章90视频文章100视频文章120视频文章140 视频2关键字专题关键字专题tag2tag3文章专题文章专题2文章索引1文章索引2文章索引3文章索引4文章索引5123456789101112131415文章专题3
当前位置: 首页 - 正文

全国大学生数学竞赛赛试题(1-9届)

来源:动视网 责编:小OO 时间:2025-10-02 10:56:09
文档

全国大学生数学竞赛赛试题(1-9届)

第一届全国大学生数学竞赛预赛试题一、填空题(每小题5分,共20分)1.计算__,其中区域由直线与两坐标轴所围成三角形区域.2.设是连续函数,且满足,则____________.3.曲面平行平面的切平面方程是__________.4.设函数由方程确定,其中具有二阶导数,且,则_____.二、(5分)求极限,其中是给定的正整数.三、(15分)设函数连续,,且,为常数,求并讨论在处的连续性.四、(15分)已知平面区域,为的正向边界,试证:(1);(2).五、(10分)已知,,是某二阶常系数线性非齐次
推荐度:
导读第一届全国大学生数学竞赛预赛试题一、填空题(每小题5分,共20分)1.计算__,其中区域由直线与两坐标轴所围成三角形区域.2.设是连续函数,且满足,则____________.3.曲面平行平面的切平面方程是__________.4.设函数由方程确定,其中具有二阶导数,且,则_____.二、(5分)求极限,其中是给定的正整数.三、(15分)设函数连续,,且,为常数,求并讨论在处的连续性.四、(15分)已知平面区域,为的正向边界,试证:(1);(2).五、(10分)已知,,是某二阶常系数线性非齐次
第一届全国大学生数学竞赛预赛试题

一、填空题(每小题5分,共20分)

1.计算__    ,其中区域由直线与两坐标轴所围成三角形区域.

2.设是连续函数,且满足, 则____________.

3.曲面平行平面的切平面方程是__________.

4.设函数由方程确定,其中具有二阶导数,且,则_____.

二、(5分)求极限,其中是给定的正整数.

三、(15分)设函数连续,,且,为常数,求并讨论在处的连续性.

四、(15分)已知平面区域,为的正向边界,试证:

(1);   (2).

五、(10分)已知,,是某二阶常系数线性非齐次微分方程的三个解,试求此微分方程.

六、(10分)设抛物线过原点.当时,,又已知该抛物线与轴及直线所围图形的面积为.试确定,使此图形绕轴旋转一周而成的旋转体的体积最小.

七、(15分)已知满足, 且, 求函数项级数之和.       八、(10分)求时, 与等价的无穷大量.

第二届全国大学生数学竞赛预赛试题

一、(25分,每小题5分)

(1)设其中求             (2)求。

(3)设,求。

(4)设函数有二阶连续导数,,求。

(5)求直线与直线的距离。

二、(15分)设函数在上具有二阶导数,并且且存在一点,使得,证明:方程在恰有两个实根。

三、(15分)设函数由参数方程所确定,其中具有二阶导数,曲线与在出相切,求函数。

四、(15分)设证明:(1)当时,级数收敛; (2)当且时,级数发散。

五、(15分)设是过原点、方向为,(其中的直线,均匀椭球,其中(密度为1)绕旋转。(1)求其转动惯量;(2)求其转动惯量关于方向的最大值和最小值。

六、(15分)设函数具有连续的导数,在围绕原点的任意光滑的简单闭曲线上,曲线积分的值为常数。(1)设为正向闭曲线证明  (2)求函数;(3)设是围绕原点的光滑简单正向闭曲线,求。

第三届全国大学生数学竞赛预赛试题

一.计算下列各题(共3小题,每小题各5分,共15分)

(1).求;                  (2).求;

(3)已知,求。

二.(10分)求方程的通解。

三.(15分)设函数f(x)在x=0的某邻域内具有二阶连续导数,且均不为0,证明:存在唯一一组实数,使得。

四.(17分)设,其中,,为与的交线,求椭球面在上各点的切平面到原点距离的最大值和最小值。

五.(16分)已知S是空间曲线绕y轴旋转形成的椭球面的上半部分()取上侧,是S在点处的切平面,是原点到切平面的距离,表示S的正法向的方向余弦。计算:(1);(2)

六.(12分)设f(x)是在内的可微函数,且,其中,任取实数,定义证明:绝对收敛。

七.(15分)是否存在区间上的连续可微函数f(x),满足,

?请说明理由。

第四届全国大学生数学竞赛预赛试卷

一.每题6分共30分

1.求极限;                      2.求极限;

3.求通过直线的两个相互垂直的平面,是其中一个平面过点();

4.已知函数,且,确定常数和,使函数满足方程;

5.设函数连续可微,,且在右半平面上与路径无关,求;

二.(10分)计算;

三.(10分)求方程的近似解,精确到;

四.(12分)设函数二阶可导,且,求,其中是曲线上点处切线在轴上的截距;

五.(12分)求最小实数,使得对满足的连续的函数,都有;

六.(12分)设为连续函数,,区域是由抛物面和球面所围起来的上半部分,定义三重积分,求;

七.(14分)设与为正项级数那么(1)若,则收敛;(1)若,则若发散,收敛。

第五届全国大学生数学竞赛预赛试卷

一、解答下列各题(每小题6分共24分)

1.求极限.     2.证明广义积分不是绝对收敛的

3.设函数由确定,求的极值。

4.过曲线上的点A作切线,使该切线与曲线及轴所围成的平面图形的面积为,求点A的坐标。

二、(12分)计算定积分

三、(12分)设在处存在二阶导数,且。证明 :级数收敛。

四、(12分)设,证明

五、(14分)设是一个光滑封闭曲面,方向朝外。给定第二型的曲面积分。试确定曲面,使积分I的值最小,并求该最小值。

六、(14分)设,其中为常数,曲线C为椭圆,取正向。求极限

七(14分)判断级数的敛散性,若收敛,求其和。

第六届全国大学生数学竞赛预赛试题

一 填空题(共有5小题,每题6分,共30分)

1.已知和是齐次二阶常系数线性微分方程的解,则该方程是_ 

2.设有曲面和平面。则与平行的的切平面方程是_

3.设函数由方程所确定。求_____

4.设。则_    5.已知。则__

二 (12分)设为正整数,计算。

三 (14分)设函数在上有二阶导数,且有正常数使得。证明:对任意,有。

四 (14分)(1)设一球缺高为,所在球半径为。证明该球缺体积为。球冠面积为;(2)设球体被平面所截得小球缺为,记球冠为,方向指向球外。求第二型曲面积分

五 (15分)设在上非负连续,严格单增,且存在,使得。求

六 (15分)设。求

第七届全国大学生数学竞赛预赛试卷

一、填空题(每小题6分,共5小题,满分30分)

(1)极限                          .

(2)设函数由方程所决定,其中具有连续偏导数,且。则             .

(3)曲面在点的切平面与曲面所围区域的体积是       .

(4)函数在的傅立叶级数在收敛的值是             .

(5)设区间上的函数定义域为的,则的初等函数表达式是           .

二、(12分)设是以三个正半轴为母线的半圆锥面,求其方程。

三、(12分)设在内二次可导,且存在常数,使得对于,有,则在内无穷次可导。

四、(14分)求幂级数的收敛域,及其和函数。

五、(16分)设函数在上连续,且。试证:

(1)使     (2)使

六、(16分)设在上有连续的二阶偏导数,且。若

证明:。

第八届全国大学生数学竞赛预赛试卷

一、填空题(每小题5分,满分30分)

1、若在点可导,且,则            .

2、若,存在,求极限.

3、设有连续导数,且,记,若,求在的表达式.

4、设,求,.

5、求曲面平行于平面的切平面方程.  

二、(14分)设在上可导,,且当,,

试证当,. 

三、(14分)某物体所在的空间区域为,密度函数为,求质量. 

四、(14分)设函数在闭区间上具有连续导数,,,

证明:. 

五、(14分)设函数在闭区间上连续,且,证明:在内存在不同的两点,使得. 

六、设在可导,且. 用Fourier级数理论证明为常数.

第九届全国大学生数学竞赛预赛试卷

一填空

1. 已知可导函数满足, 则

2.求

3. 设具有二阶连续偏导数,且,其中为非零常数。则=____。

4. 设有二阶导数连续,且,则=______

5不定积分=________.

6. 记曲面和围成空间区域为,则三重积分=__________.

二(本题满分14分) 设二元函数在平面上有连续的二阶偏导数. 对任何角度,定义一元函数.若对任何都有且. 证明是的极小值. 

三 (本题满分14分)  设曲线为在,,

上从到的一段. 求曲线积分

四(本题满分15分) 设函数且在实轴上连续,若对任意实数,有,则,。

五(本题满分15分)  设为一个数列,为固定的正整数。若,其中为常数,证明。

文档

全国大学生数学竞赛赛试题(1-9届)

第一届全国大学生数学竞赛预赛试题一、填空题(每小题5分,共20分)1.计算__,其中区域由直线与两坐标轴所围成三角形区域.2.设是连续函数,且满足,则____________.3.曲面平行平面的切平面方程是__________.4.设函数由方程确定,其中具有二阶导数,且,则_____.二、(5分)求极限,其中是给定的正整数.三、(15分)设函数连续,,且,为常数,求并讨论在处的连续性.四、(15分)已知平面区域,为的正向边界,试证:(1);(2).五、(10分)已知,,是某二阶常系数线性非齐次
推荐度:
  • 热门焦点

最新推荐

猜你喜欢

热门推荐

专题
Top