
3.1 Introduction
A circuit that employs a numerical signal in its operation is classified as a digital circuit.Computers,pocket calculators, digital instruments, and numerical control (NC) equipment are common applications of digital circuits. Practically unlimited quantities of digital information can be processed in short periods of time electronically. With operational speed of prime importance in electronics today,digital circuits are used more frequently.
In this chapter, digital circuit applications are discussed.There are many types of digital circuits that have applications in electronics, including logic circuits, flip-flop circuits, counting circuits, and many others. The first sections of this unit discuss the number systems that are basic to digital circuit understanding. The remainder of the chapter introduces some of the types of digital circuits and explains Boolean algebra as it is applied to logic circuits.
3.2 Digital Number Systems
The most common number system used today is the decimal system,in which 10 digits are used for counting. The number of digits in the system is called its base (or radix).The decimal system,therefore,has a base of 10.
Numbering systems have a place value,which refers to the placement of a digit with respect to others in the counting process. The largest digit that can be used in a specific place or location is determined by the base of the system. In the decimal system the first position to the left of the decimal point is called the units place. Any digit from 0 to 9 can be used in this place.When number values greater than 9 are used,they must be expressed with two or more places.The next position to the left of the units place in a decimal system is the tens place.The number 99 is the largest digital value that can be expressed by two places in the decimal system.Each place added to the left extends the number system by a power of 10.
Any number can be expressed as a sum of weighted place values.The decimal number 2583,for example, is expressed as (2×1000)+(5×100)+(8×10)+(3×1).
The decimal number system is commonly used in our daily lives. Electronically, however, it is rather difficult to use. Each digit of a base 10 system would require a specific value associated with it, so it would not be practical.
3.2.1 Binary Number System
Electronic digital systems are ordinarily the binary type,which has 2 as its base. Only the numbers 0 or 1 are used in the binary system.Electronically,the value of 0 can be associated with a low-voltage value or no voltage. The number 1 can then be associated with a voltage value larger than 0. Binary systems that use these voltage values are said to have positive logic. Negative logic,by comparison,has a voltage assigned to 0 and no voltage value assigned to 1 .Positive logic is used in this chapter.
The two operational states of a binary system,1 and 0,are natural circuit conditions. When a circuit is turned off or has no voltage applied,it is in the off, or 0,state. An electrical circuit that has voltage applied is in the on,or 1,state. By using transistor or ICs,it is electronically possible to change states in less than a microsecond. Electronic devices make it possible to manipulate millions of 0s and is in a second and thus to process information quickly.
The basic principles of numbering used in decimal numbers apply in general to binary numbers.The base of the binary system is 2,meaning that only the digits 0 and 1 are used to express place value. The first place to the left of the binary point,or starting point,represents the units,or is,location. Places to the left of the binary point are the powers of 2.Some of the place values in base 2 are 2º=1,2¹=2,2²=4,2³=8,2⁴=16,25=32,and 26=.
When bases other than 10 are used,the numbers should have a subscript to identify the base used.The number 100₂is an example.
The number 100₂(read“one,zero,zero, base 2”)is equivalent to 4 in base 10,or 410.Starting with the first digit to the left of the binary point,this number has value (0×20)+(0×21)+(1×22).In this method of conversion a binary number to an equivalent decimal number,write down the binary number first. Starting at the binary point,indicate the decimal equivalent for each binary place location where a 1 is indicated. For each 0 in the binary number leave a blank space or indicate a 0 ' Add the place values and then record the decimal equivalent.
The conversion of a decimal number to a binary equivalent is achieved by repetitive steps of division by the number 2.When the quotient is even with no remainder,a 0 is recorded.When the quotient has a remainder. as 1 is recorded.The division process continues until the quotient is 0.The binary equivalent consists of the remainder values in the order last to first.
3.2.2 Binary-coded Decimal (BCD) Number System
When large numbers are indicated by binary numbers,they are difficult to use. For this reason,the Binary-Coded Decimal(BCD) method of counting was devised. In this system four binary digits are used to represent each decimal digit.To illustrate this procedure,the number 105,is converted to a BCD number.In binary numbers,10510=10001012.
To apply the BCD conversion process,the base 10 number is first divided into digits according to place values.The number 10510 gives the digits 1-0-5.Converting each digit to binary gives 0001-0000-0101BCD.Decimal numbers up to 99910 may be displayed by this process with only 12 binary numbers. The hyphen between each group of digits is important when displaying BCD numbers.
The largest digit to be displayed by any group of BCD numbers is 9.Six digits of a number-coding group are not used at all in this system.Because of this, the octal (base 8) and the hexadecimal (base 16) systems were devised. Digital circuits process numbers in binary form but usually display them in BCD,octal,or hexadecimal form.
3.2.3 Octal Number System
The octal (base 8) number system is used to process large numbers by digital circuits.The octal system of numbers uses the same basic principles as the decimal and binary systems.
The octal number system has a base of 8. The largest number used in a base 8 system is 7. The place values starting at the left of the octal point are the powers of eight: 80=1,81=8,82=,83=512,84=4096,and so on.
The process of converting an octal number to a decimal number is the same as that used in the binary-to-decimal conversion process. In this method,however,the powers of 8 are used instead of the powers of 2. The number for changing 3828 to an equivalent decimal is 25810.
Converting an octal number to an equivalent binary number is similar to the BCD conversion process. The octal number is first divided into digits according to place value. Each octal digit is then converted into an equivalent binary number using only three digits.
Converting a decimal number to an octal number is a process of repetitive division by the number 8.After the quotient has been determined,the remainder is brought down as the place value.When the quotient is even with no remainder,a 0 is transferred to the place position.The number for converting 409810 to base 8 is 100028.
Converting a binary number to an octal number is an important conversion process of digital circuits. Binary numbers are first processed at a very high speed. An output circuit then accepts this signal and converts it to an octal signal displayed on a readout device.
Assume that the number 1101001002 is to he changed to an equivalent octal number. The digits must first be divided into groups of three,starting at the octal point.Each binary group is then converted into an equivalent octal number.These numbers are then combined,while remaining in their same respective places,to represent the equivalent octal number.
3.2.4 Hexadecimal Number System
The hexadecimal number system is used in digital systems to process large number values.The base of this system is 16,which means that the largest number used in a place is 15.Digits used by this system are the numbers 0-9 and the letters A-F. The letters A-P are used to denote the digits 10-15,respectively. The place values to the left of the hexadecimal point are the powers of 16:160=1,161=16,162=256, l63=4096,1=65536, and so on.
The process of changing a hexadecimal number to a decimal number is similar to that outlined for other conversions. Initially,a hexadecimal number is recorded in proper digital order.The place values,or powers of the base,are then positioned under the respective digits in step 2.In step 3,the value of each digit is recorded. The values in steps 2 and 3 are then multiplied together and added. The sum gives the decimal equivalent value of a hexadecimal number.
The process of changing a hexadecimal number to a binary equivalent is a simple grouping operation. Initially,the hexadecimal number is separated into digits. Each digit is then converted to a binary number using four digits per group. The binary group is combined to form the equivalent binary number.
The conversion of a decimal number to a hexadecimal number is achieved by repetitive division,as with other number systems. In this procedure the division is by 16 and remainders can be as large as 15.
Converting a binary number to a hexadecimal equivalent is the reverse of the hexadecimal to binary process. Initially,the binary number is divided in groups of four digits,starting at the hexadecimal point. Each number group is then converted to a hexadecimal value and combined to form the hexadecimal equivalent number.
3.3 Binary Logic Circuits
In digital circuit-design applications binary signals are far superior to those of the octal,decimal,or hexadecimal systems. Binary signals can be processed very easily through electronic circuitry,since they can be represented by two stable states of operation. These states can be easily defined as on or off, 1 or 0,up or down,voltage or no voltage,right or left,or any other two-condition states. There must be no in-between state.
The symbols used to define the operational state of a binary system are very important.In positive binary logic,the state of voltage,on,true,or a letter designation (such as A ) is used to denote the operational state 1 .No voltage,off,false,and the letter A are commonly used to denote the 0 condition. A circuit can be set to either state and will remain in that state until it is caused to change conditions.
Any electronic device that can be set in one of two operational states or conditions by an outside signal is said to be bistable. Relays,lamps,switches,transistors, diodes and ICs may be used for this purpose. A bistable device has the capability of storing one binary digit or bit of information.By using many of these devices,it is possible to build an electronic circuit that will make decisions based upon the applied input signals. The output of this circuit is a decision based upon the operational conditions of the input. Since the application of bistable devices in digital circuits makes logical decisions,they are commonly called binary logic circuits.
If we were to draw a circuit diagram for such a system,including all the resistors,diodes,transistors and interconnections,we would face an overwhelming task, and an unnecessary one.Anyone who read the circuit diagram would in their mind group the components into standard circuits and think in terms of the" system" functions of the individual gates. For this reason,we design and draw digital circuit with standard logic symbols. Three basic circuits of this type are used to make simple logic decisions.These are the AND circuit, OR circuit, and the NOT circuit.Electronic circuits designed to perform logic functions are called gates.This term refers to the capability of a circuit to pass or block specific digital signals.The logic-gate symbols are shown in Fig.3-1.The small circle at the output of NOT gate indicates the inversion of the signal. Mathematically,this action is described as A=.Thus without the small circle,the rectangle would represent an amplifier (or buffer) with a gain of unity.An AND gate has two or more inputs and one output. If all inputs are in the 1 state simultaneously,then there will be a 1 at the output.The AND gate in Fig. 3-1 produces only a 1 out-put when A and B are both 1. Mathematically,this action is described as A·B=C. This expression shows the multiplication operation. An OR gate has also two or more inputs and one output. Like the AND gate,each input to the OR gate has two possible states:1 or 0.The output of OR gate in Fig.3-1 produces a when either or both inputs are l.Mathematically,this action is described as A+B=C. This expression shows OR addition. This gate is used to make logic decisions of whether or not a 1 appears at either input.
An IF-THEN type of sentence is often used to describe the basic operation of a logic state.For example,if the inputs applied to an AND gate are all 1,then the output will be 1 .If a 1 is applied to any input of an OR gate,then the output will be 1 .If an input is applied to a NOT gate,then the output will be the opposite or inverse.The logic gate symbols in Fig. 3-1 show only the input and output connections. The actual gates,when wired into a digital circuit, would have supply and grounding connections as well.Fig. 3-2 shows the inner connections of 74LS08,i.e. a quadruple,two-input AND gate chip.Notice that the power supply is applied between pin 14 and 7.
3.4 Combination Logic Gates
When a NOT gate is combined with an AND gate or an OR gate,it is called a combination logic gate. A NOT-AND gate is called a NAND gate,which is an inverted AND gate. Mathematically the operation of a NAND gate is A·B=. A combination NOT-OR ,or NOR,gate produces a negation of the OR function.Mathematically the operation of a NOR gate is A+B=.A 1 appears at the output only when A is 0 and B is 0.The logic symbols are shown in Fig. 3-3.The bar over C denotes the inversion,or negative function,of the gate.
The logic gates discussed here illustrate basic gate operation.In actual digital electronic applications,solid-state components are ordinarily used to accomplish gate functions.
Boolean algebra is a special form of algebra that was designed to show the relationships of logic operations.Thin form of algebra is ideally suited for analysis and design of binary logic systems.Through the use of Boolean algebra,it is possible to write mathematical expressions that describe specific logic functions.Boolean expressions are more meaningful than complex word statements or or elaborate truth tables.The laws that apply to Boolean algebra are used to simplify complex expressions. Through this type of operation it may be possible to reduce the number of logic gates needed to achieve a specific function before the circuits are designed.
In Boolean algebra the variables of an equation are assigned by letters of the alphabet.Each variable then exists in states of 1 or 0 according to its condition.The 1,or true state,is normally represented by a single letter such as A,B or C.The opposite state or condition is then described as 0,or false,and is represented by or A’.This is described as NOT A,A negated,or A complemented.
Boolean algebra is somewhat different from conventional algebra with respect to mathematical operations.The Boolean operations are expressed as follows:
Multiplication:A AND B,AB,,A·B
OR addition:A OR B .A+B
Negation,or complementing:NOT A,,A’
Assume that a digital logic circuit has three input variables,A,B,and C. The output circuit should operate when only C is on by itself or when A,B and C are all on expression describes the desired output. Eight (23) different combinations of A,B,and C exist in this expression because there are three,inputs. Only two of those combinations should cause a signal that will actuate the output. When a variable is not on (0),it is expressed as a negated letter. The original statement is expressed as follows: With A,B,and C on or with A off, B off, and C on ,an output (X)will occur:
ABC+C=X
A truth table illustrates if this expression is achieved or not.Table 3-1 shows a truth table for this equation. First,ABC is determined by multiplying the three inputs together.A 1 appears only when the A,B,and C inputs are all 1.Next the negated inputs A and B are determined.Then the products of inputs C,A,and B are listed.The next column shows the addition of ABC and C.The output of this equation shows that output 1 is produced only when C is 1 or when ABC is 1.
A logic circuit to accomplish this Boolean expression is shown in Fig. 3-4.Initially the equation is analyzed to determine its primary operational function.Step1 shows the original equation.The primary function is addition,since it influences all parts of the equation in some way.Step 2 shows the primary function changed to a logic gate diagram.Step 3 shows the branch parts of the equation expressed by logic diagram,with AND gates used to combine terms.Step 4 completes the process by connecting all inputs together.The circles at inputs , of the lower AND gate are used to achieve the negative function of these branch parts.
The general rules for changing a Boolean equation into a logic circuit diagram are very similar to those outlined.Initially the original equation must be analyzed for its primary mathematical function.This is then changed into a gate diagram that is inputted by branch parts of the equation.Each branch operation is then analyzed and expressed in gate form.The process continues until all branches are completely expressed in diagram form.Common inputs are then connected together.
3.5 Timing and Storage Elements
Digital electronics involves a number of items that are not classified as gates.Circuits or devices of this type have a unique role to play in the operation of a system.Included in this system are such things as timing devices,storage elements,counters,decoders,memory,and registers.Truth tables symbols,operational characteristics,and applications of these items will be presented here.Today,these circuits or devices are built primarily on an IC chip. The internal construction of the chip cannot be effectively altered. Operation is controlled by the application of an external signal to the input. As a rule,very little work can be done to control operation other than altering the input signal.
The logic circuits in Fig. 3-4 are combinational circuit because the output responds immediately to the inputs and there is no memory. When memory is a part of a logic circuit,the system is called sequential circuit because its output depends on the input plus its history state.
3.5.1 Flip-Flops
Some bistable multivibrators were already discussed previously. This type of device was used to generate a square wave. It could also be triggered to change states when an input signal is applied.A bistable multivibrator,in the strict sense,is a flip-flop. When it is turned on,it assumes a particular operational state. It does not change states until the input is altered.A flip-flop has two outputs. These are generally labeled Q and. They are always of an opposite polarity.Two inputs are usually needed to alter the state of a flip-flop. A variety of names are used for the inputs.These vary a great deal between different flip-flops.
1. R-S flip-flops
Fig.3-5 shows logic circuit construction of an R-S flip-flop. It is constructed from two NAND gates. The output of each NAND provides one of the inputs for the other NAND. R stands for the reset input and S represents the set input.
The truth table and logic symbol are shown in Fig. 3-6.Notice that the truth table is somewhat more complex than that of a gate. It shows, for example,the applied input, previous output,and resulting output.To understand the operation of an R-S flip-flop,we must first look at the previous outputs.This is the status of the output before a change is applied to the input. The first four items of the previous outputs are Q=1 and =0. The second four states have Q=0 and =1.
Let us consider that R and S are both 1 but that is 0.In this case of the input to NANDS is 0 and hence its output,Q,is 1.This is consistent with the assumption that is 0,which implies that both inputs to NANDR are 1.By symmetry,the logic circuit will also stable with Q0 and 1.
If now R momentarily becomes 0,the output of NANDR,,will rise to resulting in NANDS having 1 at both inputs. This will force Q to 0,and it will keep is after R returns to the 1 state.Thus Q is RESET by a 0 at R. similarly,the SET (Q=1) can be realized by a 0 at S.
The outputs Q and are unpredictable when the inputs R and S are 0 states.This case is not allowed.
Seldom would individual gates be used to construct a flip-flop,rather than one of the special types for the flip-flop packages on a single chip would be used by a designer.
A variety of different flip-flops are used in digital electronic systems today. In general,each flip-flop type has some unique characteristic to distinguish it from the others. An R-S-T flip-flop for example .is a triggered R-S flip-flop. It will not change states when the R and S inputs assume a value until a trigger pulse is applied. This would permit a large number of flip-flops to change states all at the same time. Fig. 3-7 shows the logic circuit construction. The truth table and logic symbol are shown in Fig. 3-8. The R and S input are thus active when the signal at the gate input (T) is 1 .Normally,such timing,or synchronizing,signals are distributed throughout a digital system by clock pulses,as shown in Fig. 3-9.The symmetrical clock signal provides two times each period.The circuit can be designed to trigger at the leading or trailing edge of the clock. The logic symbols for edge trigger flip-flops are shown in Fig.3-10.
2. J-K flip-flops
Another very important flip-flop has J-T-K inputs. A J-K flip-flop of this type does not have an unpredictable output state. The J and K inputs have set and clear input capabilities. These inputs must be present for a short time before the clock or trigger input pulse arrives at T. In addition to this,J-K flip-flops may employ preset and preclear functions. This is used to establish sequential timing operations. Fig.3-11 shows the logic symbol and truth table of a J-K flip-flop.
3. 5. 2 Counters
A flip-flop has a memory,it can be used in switching operations,and it can count pulses. A series of interconnected flip-flops is generally called a register.Each register can store one binary digit or bit of data. Several flip-flops connected form a counter. Counting is a fundamental digital electronic function.
For an electronic circuit to count,a number of things must be achieved. Basically,the circuit must be supplied with some form of data or information that is suitable for processing. Typically,electrical pulses that turn on and off are applied to the input of a counter. These pulses must initiate a state change in the circuit when they are received. The circuit must also be able to recognize where it is in counting sequence at any particular time. This requires some form of memory. The counter must also be able to respond to the next number in the sequence. In digital electronic systems flip-flops are primarily used to achieve counting. This type of device is capable of changing states when a pulse is applied,has memory,and will generate an output pulse.
There are several types of counters used in digital circuitry today.Probably the most common of these is the binary counter.This particular counter is designed to process two-state or binary information. J-K flip-flops are commonly used in binary counters.
Refer now to the single J-K flip-flop of Fig. 3-11 .In its toggle state,this flip-flop is capable of achieving counting. First,assume that the flip-flop is in its reset state. This would cause Q to be 0 and Q to be 1 .Normally,we are concerned only with Q output in counting operations. The flip-flop is now connected for operation in the toggle mode. J and K must both be made high or in the 1 state. When a pulse is applied to the T,or clock,input,Q changes to 1.This means that with one pulse applied,a 1 is generated in the output. The flip-flop has,therefore,counted one time. When the next pulse arrives,Q resets,or changes to 0. Essentially,this means that two input pulses produce only one output pulse. This is a divide-by-two function.For binary numbers,counting is achieved by a number of divide-by-two flip-flops.
To count more than one pulse,additional flip-flops must be employed. For each flip-flop added to the counter,its capacity is increased by the power of 2. With one flip-flop the maximum count was 20,or 1 .For two flip-flops it would count two places,such as 20 and 21.This would reach a count of 3 or a binary number of 11.The count would be 00,01,10,and 11. The counter would then clear and return to 00. In effect, this counts four state changes. Three flip-flops would count three places,or 20,21,and 22.This would permit a total count of eight state changes.The binary values are 000,001,010,011,100,101,110 and 111.The maximum count is seven,or 111 .Four flip-flops would count four places,or 20,21,22,and 23.The total count would make 16 state changes. The maximum count would be 15,or the binary number 1111.Each additional flip-flop would cause this to increase one binary place.
---本文整理自“刀刀”学长。邮箱:daodao191206@163.com
河南理工大学电气工程及其自动化专业中英双语对照翻译。
中文翻译:
第三章 数字电子技术
3.1 介绍
采用了数字信号的电路称为数字电路。电脑、袖珍计算器,数字仪器、数控设备常见的数字电路的应用。几乎无限数量的数字信息电子可以在很短的时间处理。如今,在电子学中,运算速度是最重要的性能之一,因此数字电路更加频繁地被使用。
在这一章,对数字电路的应用进行了讨论。有许多类型的数字电路应用在电子技术中,包括逻辑电路、触发器电路,计数电路,和许多其他内容。这个单元的第一节主要讨论了对数字电路系统基本数量的理解。其余的章节介绍了数字电路的类型以及阐述了布尔代数在逻辑电路中的应用。
3.2 数字编号系统
当今使用的最常见的数字系统是十进制系统中,其中每10位计一次数。在该系统中的位数被称为基(或基数)。十进制系统具有10个基。
编码系统都有一个数位值,与其它系统相比它指的是在计算过程中的一个数字位置。在一个数位或位置我们所能使用的最大的数字是由该系统的基所决定的。在十进制系 统中,小数点左侧第一个位置叫做个位。在个位可以使用从0~9的任一数字。当要使用比9大的数值时,就必须用两个或更多的数位来表示。在十进制系统中,个位左侧的下一个位置是十位,数字99是两个数位所能表示的最大值。加到左侧的每一个数位把数字系统扩展为10的次幂。
任何数量可以表示为加权处的值的总和。十进制数2583 ,例如,可以表示为(2 ×1000 )+(5 ×100)+( 8×10 )+( 3×1) 。
在我们的日常生活中常用十进制数字系统。然而,电子它是很难使用的。一个是十进制数字系统中的每个数字都需要特定的值与其相关联,所以它是不切合实际的。
3.2.1 二进制数字系统
通常电子数字系统的二进制类型,2作为它的基。只有0或1的数字在二进制中使用。电子为0的值可以用低电压值或没有电压相关联。数字1可以与一个电压值大于0的内容相关联。这些电压值用二进制表示的是正逻辑。相对地,负逻辑电压分配到0,没有电压值的分配给1。本章采用正逻辑。
一个二进制有两种操作状态,1和0,是自然循环条件。当电路被关断或已不施加电压时,它处于关闭或0状态。已施加电压的电路处于导通,或1状态。通过使用晶体管或集成电路,在不到一微秒的时间内能够改变电路状态。电子设备有可能会操纵百万的0,并且是在第二,从而快速地处理信息。
编号用于小数的基本原则适用于一般二进制数字。二进制的基是2,这意味着只有数字0和1是用来表达的价值。首先左边的二元观点,或起点,代表单位,或位置。二进制的左边点的地方是2的幂。一些地方的值在基2,2º= 1,2¹= 2,2²= 4、2³= 8,2⁴= 16,25= 32,26 = 。
当基不是10被使用时,数字应该有一个下标来标识基,数字100₂就是一个例子。
数量100₂(读“零,零,基数2”)相当于4在基数10内或410。从第一位二进制左边的点,这个数字相当于(0×20)+(0×21)+(1×22)。一个二进制数等效转换为十进制数的方法,首先写下二进制数。从二进制的小数点开始,当指数为1时,对于每一位二进制位置空间给出了十进制等效值。二进制数值中每个0保留了一空白空间或指数为0。按权表达式展开然后记录十进制数。
在一个十进制数转换为二进制数相当于由2部重复步骤实现。当商没有余数时用0来记录。当商余数时用1来记录。开方过程继续进行,直到商为0 。从而等效二进制数按照由后到前的顺序来写。
3.2.2 二进制编码的十进制(BCD)数字系统
当大量用二进制数表示,他们很难使用。因为这个原因,二-十进制(BCD)设计的计算方法。在此系统中四个二进制数字是用来表示每一个十进制数字。为了说明这个过程,数量105,转换为BCD号码。在二进制数,10510= 10001012。
要应用的BCD转换过程中,基10首先根据位值分为数字。数10510给出的数字1-0-5 。每个数字转换为二进制给出了0001- 0000 - 0101(BCD)。十进制数高达99910可通过此过程中,只有12位二进制数来显示。显示BCD数字时,每组数字之间的连字符是非常重要的。
通过任何一组BCD数的要显示的最大数字是9 。不使用六位数的数编码组在所有在这个系统中。正因为如此,八进制(基为8 )和十六进制(基为16 )系统进行了设计。以二进制形式的数字电路处理数字,但通常它们显示在BCD码,八进制或十六进制形式。
3.2.3 八进制数字系统
八进制(基8 )数字系统通常用于数字电路中来处理大量数据运算。数字的八进制系统使用相同的基本原则与十进制和二进制系统相似。
八进制数系统的基8。八进制数字系统中最大的数字是7。位置值从左边的八进制值都是8的次幂:80=1,81=8,82=,83=512,84=4096,等等。
转换一个八进制数的十进制数的过程是一样的,在二进制到十进制的转换过程中使用。然而,在这种方法中,8的权是用来代替2的次幂。数字3828等效转换为十进制的数是25810。
将一个八进制数转换为一个等价的二进制数类似于BCD转换的过程。八进制数首先要通过数据位值来分位。然后每一个八进制数字转化为三个等价的二进制数。
将一个十进制数转换成一个八进制数是一个除8取余的过程。连续除8并取余数作为结果,直至商为0,得到的余数从低位到高位依次排列即得到八进制数。409810转换为八进制的数是100028。
将一个二进制数转换成一个八进制数是一个重要的数字电路的转换过程。首先输入电路通过二进制数以一个非常高的速度来处理。输出电路,再将接收到的信号转换为八进制信号来在输出设备上显示。
假设数1101001002将其转换为一个等价的八进制数。对每三位二进制位进行分组,在八进制点开始。然后每个二进制组转化为一个等价的八进制数。然后综合这些数字,同时保持各自原来的地方,来表示八进制数。
3.2.4 十六进制数字系统
十六进制数系统通常在数字系统中用于处理大量的值。这个系统的基是16,这就意味着它的最大数字是15。本系统所使用的数字是数字0-9和A-F。字母A-F用来分别表示数字10 - 15。位置值的小数点左边是16的方幂:160=1,161=16,162=256, l63=4096,1=65536,等等。
一个十六进制数转换成十进制数的过程是类似于其他进制的转换。首先一个十六进制数按适当的数字顺序来记录。位置值或者是基权的范围,再根据各自的数字在步骤2中设置。在步骤3中,每个数字的值被记录下来。然后将在步骤2和3中的值乘在一起,并补充。综合给出了一个十六进制数转换成十进制的等效值。
一个十六进制数等效转换为二进制的过程是一个简单的分组操作。首先将十六进制数进行分组。用4位二进制代码取代对应的1位十六进制数。二进制组被组合以形成等效的二进制数。
十进制数等效转换为十六进制数的过程是通过除16取余来实现的,与其他数制系统相似。在此过程中是通过除以16取余,而余数最大可以到15 。
将二进制数等效转换为十六进制是十六进制转二进制的逆运算。首先,将二进制数以4个数字为一组进行分组,从十六进制点开始。每组数量然后转换为十六进制值,结合形成了十六进制同等数量的数。
3.3 二进制逻辑电路
在数字电路设计应用程序的二进制信号是远远优于八进制,十进制或十六进制系统。二进制信号通过电路可以很容易处理,因为他们可以用两种稳定状态的操作。这些状态可以很容易地定义为开或关,1或0,向上或向下,有电压或无电压,左或右,或任何其他双态状态。并且必须没有中间状态。
用于定义一个二进制系统的操作状态的符号是非常重要的。在二进制正逻辑,电压的状态下,打开,真的,或字母命名(如A )是用来表示操作状态1 。无电压,关闭,假的,字母A是常用来表示0条件。一个电路可以被设置一种状态并保持这种状态,直到它发生变化。
我们所说的双稳态的任何电子器件都能通过外部信号将其设置为两种工作状态或条件中的一种。继电器、灯、开关、二极管以及集成电路都可以实现该目的。双稳态器件具有存储一个二进制数字或位信息的能力。通过使用多个这样 的器件就可能构建出一个电子电路,它所作的判断取决于所加的输入信号。电路的输出是基于输入运算条件的判定。 由于双稳态器件在数字电路中用于做逻辑判断,所以它们通常叫做二进制逻辑电路。
如果所画电路图要包含全部的电阻器、二极管、晶体管以及内部的相互连接,这会是一项巨大的,也是不必要的工作。谁懂线路图将在他们组的组件成标准的电路和考虑个入门的“系统”功能。出于这个原因,我们设计并绘制标准数字电路与逻辑符号。这种类型的三种基本电路是用来做出简单的逻辑的决定。这些和电路或电路,电路。电子电路设计执行逻辑功能被称为门。这个词指的是电路的功能通过或阻止特定的数字信号。逻辑门符号示于图3-1 。小圆非门的输出显示的反转信号。在数学上,这一行动是d。因此没有小圆,矩形代表一个放大器(或缓冲)获得的统一。一个与门有两个或多个输入和一个输出。如果所有的输入都是同时在1状态,然后会有一个1的输出。与门在图3 - 1只产生1输出时,A和B都是1。在数学上,这一行动被描述为一个A·B = C。这个表达式给出了乘法操作。一个或门也在两个或两个以上的输入和一个输出。与门一样,每个输入或门有两种可能的状态:1或0。或门的输出图生成一个输入或两者。在数学上,这一行动被描述为一个A+ B = C。这个表达式显示或添加。门是用来决定1输入与否的逻辑判断。
一个if-then型句话常被用来形容一个逻辑状态的基本操作。例如,如果输入施加到一个与门都为1 ,那么输出将是1 。如果1被施加到一个或门的任何输入,则输出将为1。如果一个输入被施加到非门,那么输出将是相反的或相反。逻辑门符号在图3-1仅显示了输入和输出连接。实际的门,当有线到数字电路,将有电源和接地连接为好。图3-2显示了74LS08的内在联系,即一四,两输入与门芯片。注意,在电源端子14和7之间。
3.4 组合逻辑门
当一个非门加上一个与门或一个或门,它被称为逻辑门组合。与非门称为与非门,这是一个反向与门。A·B=是与非门在数学上的操作。结合或非门,或非门,产生一个否定的或功能。A+B=是或非门在数学上的操作。1只出现在输出是0和B是0。逻辑符号图3 - 3所示。在C栏表示反转,或负功能的门。
这里讨论的逻辑门说明基本的门操作。在实际的数字电子应用中,固态组分中通常用来完成门的功能。
布尔代数是一种特殊的代数形式是为了显示逻辑操作的关系。代数微小的形式是对二进制逻辑系统的分析和设计。通过使用布尔代数,可以写数学表达式来描述特定的逻辑功能。布尔表达式比复杂的单词语句或真值表更加复杂。 布尔代数的定律常常用于简化复杂的表达式。通过这种类型的运算,可以减少完成一项特殊的功能所需的逻辑门的数量。
在布尔代数方程的变量被分配的字母。每个变量都根据其条件是1或0而存在。1,或真实状态,通常是由一个字母表示,比如,B或C。相反的状态或条件被描述为0,或假,用或者 A’代表。这被描述为不是否定,或补充。
布尔代数有所不同与传统代数对数算。布尔操作表示如下:
乘法运算:A AND B,AB,,A·B
或门加运算:A OR B .A+B
否定或补充:NOT A,A’
假设数字逻辑电路有三个输入变量,a,B和C的输出电路时应操作只本身或当一个C,B和C都在表达描述所需的输出。八(23)的不同组合,B和C存在于这个表达式,因为有三个输入。只有两个的组合应该引起动作输出的信号。当一个变量(0)不是,它是表示为一个否定的信。原来的语句表达如下:A,B,C或关闭,B,和C,一个输出(X)会发生:
ABC+C=X
真值表说明了如果这个表达式是否实现。表3 - 1显示了这个方程的真值表。首先,ABC决定乘以三个一起输入。只有当出现1,A、B和C的输入都是1。确定下一个否定的输入A和B。然后输入C的产品,列出。第二列显示了ABC和C。这个方程的输出显示,输出1是只有当产生C为1时或者当ABC为1时。
完成这项任务的一个逻辑电路布尔表达式图3 - 4所示。首先的方程进行了分析,以确定其主要操作功能。步骤1显示了原始方程。的主要功能是添加,因为它在某种程度上影响方程的所有部分。步骤2显示了主要功能更改为一个逻辑门图。步骤3显示的分支部分方程表达的逻辑图,使用与门结合条件。第四步完成的过程将所有输入联系在一起。在圈子里输入,的降低与门是用来实现这些分支部分的负面功能。
把布尔方程转换为逻辑电路的一般规则与那些概述是很相似的。首先原始的方程必须按照其首先的数学函数进行分析。然后将其转换成以方程的各分支部分作为输入的门电 路图。每一个支路运算以门的形式被分析和表示。连续进行此过程,直到以电路图的形式表示完所有支路,然后把共用的输入连接到一起。
3.5 定时和存储元件
数字电子技术涉及到大量的不作为门的项目。这种类型的电路或器件具有在系统的操作中发挥独特作用。包括在这个系统中有一些作为计时装置,存储元件,计数器,译码器,存储器和寄存器。真值表符号,操作特性,以及这些项目的应用程序将在这里呈现。今天,这些电路或器件主要内置在IC芯片上。该芯片的内部结构不能有效地改变。操作是由一个外部信号,以将输入的应用程序进行控制。作为一项规则,很少有以控制操作其他改变输入信号比的工作。
组合电路的逻辑电路图在图3-4,因为输出立即响应该输入,并且没有储存记忆。当存储器作为一个逻辑电路的一部分,该系统被称为顺序电路,因为它的输出是由输入加它的历史状态所决定的。
3.5.1 触发器
在前面已经讨论过一些双稳态多谐振荡器。这种类型的设备被用来生成一个方波。它也可以触发改变输入信号时应用。双稳态多谐振荡器,从严格的意义上说,是一个触发器。当它打开时,它假定一个特定的操作状态。它不会改变状态,直到输入改变。触发器有两个输出。这些通常是标签的Q和。它们是相反的极性。通常需要两个输入来改变一个触发器的状态。各种各样的名称用于输入。这些变化不同的触发器之间相差很大。
1.R-S触发器
RS触发器的逻辑电路结构图见图3-5。它是由两个与非门构成。每个NAND的输出端提供的输入的其他NAND之一。 R代表的复位输入端和S表示置位输入端。
真值表和逻辑符号示于图3-6。注意到该真值表比该门的更复杂。例如,它显示了应用输入,先前的输出和结果输出。要理解R-S触发器的操作,我们必须先看前面的输出。这是更改前的状态输出应用于输入。前四项前面的输出Q = 1和= 0。第二四种状态有Q = 0和= 1。
让我们考虑,R和S都是1,但一个是0。在这种情况下输入NANDS是0,因此它的输出,Q,是1。这是符合一个假设,即为0,这意味着输入NANDR都是1。通过对称,逻辑电路与Q0和1也将稳定。
如果现在R瞬间变成0,NANDR,的输出,问,将导致NANDS 1在输入。这将迫使Q为0,它将Q R后返回到1的状态。因此问复位由0 r .同样,集(Q = 1)可以实现0在S中。
输出Q和输入R和S为0时不可预知的状态。这种情况下是不允许的。
很少会用单独的门被用来构造一个触发器,而不是一个在一个芯片触发器包的特殊类型将由设计器使用。
各种不同的触发器今天用于数字电子系统。一般来说,每个触发器类型有一些独特的特点区别于其他人。例如R-S-T触发器。是一个R-S触发器触发。它不会改变状态时,R和S输入假设值,直到一个触发脉冲。这将允许大量的触发器同时改变状态。图3 - 7显示了逻辑电路结构。真值表和逻辑符号图3 - 8所示。R和S输入因此活跃在门口当信号输入(T)是1。正常情况下,这样的时机、同步信号分布在时钟脉冲的数字系统,如图3 - 9所示。每个周期对称时钟信号提供了两次。这样的电路设计可以触发后缘的时钟。逻辑符号的边缘触发器如图3-10所示。
2.J-K触发器
另一个非常重要的触发器有J-T-K输入。这种类型的JK触发器不能预测它的输出状态。J和K输入有一套清晰的输入功能。这些输入必须存在时钟信号或触发输入脉冲到达T。除此之外,JK触发器还可以使用预设和预清除功能。用来建立顺序定时操作。如图3-11显示了J-K触发器的逻辑符号和真值表。
3.5.2 计数器
一个触发器具有存储器,它可以用在开关操作,也可以计数脉冲。一系列相互连接的触发器,一般称为寄存器。每个寄存器可以存储一个二进制数字或一个字节的数据。几个触发器连接形成一个计数器。计数是一个基本的数字电路功能。
对于用于计算的电子电路,必须获得许多条件。基本上,电路必须用某种形式的数据,或适合于处理信息的提供。通常情况下,接通和关断的电脉冲被施加到一个计数器的输入端。这些脉冲必须当启动电路中的状态改变时才能够接收到。该电路还必须能够识别它是在任何特定的时间计数序列。这就要求其具有某种形式的存储功能。计数器也能够响应序列中的下一个数字。在数字电子系统中,首先是用触发器进行计数的。这种类型的器件当有脉冲输入时 其状态能够改变,有存储的功能,能够产生输出脉冲。
今天,在数字电路中使用的计数器的几种类型。最常见的是二进制计数器。这个计数器的设计过程有两个状态或二进制信息。J-K触发器通常用于二进制计数器。
参考现在的单J-K触发器如图3-11。在其切换状态,这个触发器能够实现计数。首先,假设触发器在复位状态。这将导致问0和1问。通常情况下,我们只关心Q输出计数操作。操作的触发器现在连接切换模式。J和K都必须由高或1的状态。应用于脉冲时,或时钟输入,问更改为1。这意味着用一个脉冲,在输出中生成一个1。因此,触发器也算一次。下一个脉冲到来时,问重置,或更改为0。从本质上讲,这意味着两个输入脉冲只产生一个输出脉冲。这是一个二次分频功能。二进制数是通过二次分频触发器来进行计算的。
计算多个脉冲,也必须采取额外的触发器。每个触发器添加到计数器,其容量就增加了2。一个触发器的最大计数是20,或者1。两触发器会计算两个地方,比如20和21。这将达到3或一个二进制数的计数的11。计数是00,01、10和11。计数器将清晰的返回到00。实际上,这数四个状态改变。三个触发器会把三个地方,或20,21,和22。这将允许一个总数的8个状态改变。是000,001,010,011,100,101,110和 111的二进制值。最大的数是7或111。四个触发器会计数到四个地方,或20,21,22,和23。将改变16个状态的总数。最大计数至15,或二进制数1111。每增加额外的触发器将导致二进制数值的增加。
---本文摘译自王伟、张艳丽,电气工程与自动化专业英语,机械工业出版社
