班级: 姓名:
一、选择题(本大题共10小题,每题3分,共30分)
1.﹣2020的倒数是( )
A.﹣2020 B.﹣ C.2020 D.
2.已知a、b、c是△ABC的三条边长,化简|a+b-c|-|c-a-b|的结果为( )
A.2a+2b-2c B.2a+2b C.2c D.0
3.等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为( )
A.12 B.15 C.12或15 D.18
4.如果一次函数y=kx+b(k、b是常数,k≠0)的图象经过第一、二、四象限,那么k、b应满足的条件是( )
A.k>0,且b>0 B.k<0,且b>0
C.k>0,且b<0 D.k<0,且b<0
5.已知一个多边形的内角和为1080°,则这个多边形是( )
A.九边形 B.八边形 C.七边形 D.六边形
6.如图,直线y=ax+b过点A(0,2)和点B(﹣3,0),则方程ax+b=0的解是( )
A.x=2 B.x=0 C.x=﹣1 D.x=﹣3
7.如图,将含30°角的直角三角板ABC的直角顶点C放在直尺的一边上,已知∠A=30°,∠1=40°,则∠2的度数为( )
A.55° B.60° C.65° D.70°
8.如图,在△ABC中,CD平分∠ACB交AB于点D,过点D作DE∥BC交AC于点E,若∠A=54°,∠B=48°,则∠CDE的大小为( )
A.44° B.40° C.39° D.38°
9.如图,菱形ABCD的周长为28,对角线AC,BD交于点O,E为AD的中点,则OE的长等于( )
A.2 B.3.5 C.7 D.14
10.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则小正方形的边长为( )
A.9 B.6 C.4 D.3
二、填空题(本大题共6小题,每小题3分,共18分)
1.的平方根是________.
2.因式分解:=__________.
3.在数轴上表示实数a的点如图所示,化简+|a-2|的结果为____________.
4.如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点处,当为直角三角形时,BE的长为______。
5.正方形、、、…按如图所示的方式放置.点、、、…和点、、、…分别在直线和轴上,则点的坐标是__________.(为正整数)
6.如图,ABCD的对角线相交于点O,且ADCD,过点O作OMAC,交AD于点M.如果CDM的周长为8,那么ABCD的周长是_____.
三、解答题(本大题共6小题,共72分)
1.解方程
(1) (2)
2.先化简,再求值:,其中.
3.已知关于x的一元二次方程.
(1)求证:方程有两个不相等的实数根;
(2)如果方程的两实根为,,且,求m的值.
4.如图,已知AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,且BC=CD.
(1)求证:△BCE≌△DCF;
(2)求证:AB+AD=2AE.
5.如图,有一个直角三角形纸片,两直角边cm, cm,现将直角边沿直线AD折叠,使它落在斜边AB上,且与AE重合,你能求出CD的长吗?
6.为支援灾区,某校爱心活动小组准备用筹集的资金购买A、B两种型号的学习用品共1000件.已知B型学习用品的单价比A型学习用品的单价多10元,用180元购买B型学习用品的件数与用120元购买A型学习用品的件数相同.
(1)求A、B两种学习用品的单价各是多少元?
(2)若购买这批学习用品的费用不超过28000元,则最多购买B型学习用品多少件?
参
一、选择题(本大题共10小题,每题3分,共30分)
1、B
2、D
3、B
5、B
6、D
7、D
8、C
9、B
10、D
二、填空题(本大题共6小题,每小题3分,共18分)
1、±3
2、2(x+3)(x﹣3).
3、3.
4、3或.
5、
6、16
三、解答题(本大题共6小题,共72分)
1、(1);(2)是方程的解.
2、,
3、(1)略(2)1或2
4、略
5、CD的长为3cm.
6、(1)A型学习用品20元,B型学习用品30元;(2)800.