最新文章专题视频专题问答1问答10问答100问答1000问答2000关键字专题1关键字专题50关键字专题500关键字专题1500TAG最新视频文章推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37视频文章20视频文章30视频文章40视频文章50视频文章60 视频文章70视频文章80视频文章90视频文章100视频文章120视频文章140 视频2关键字专题关键字专题tag2tag3文章专题文章专题2文章索引1文章索引2文章索引3文章索引4文章索引5123456789101112131415文章专题3
当前位置: 首页 - 正文

直线倾斜角与斜率

来源:动视网 责编:小OO 时间:2025-10-01 09:46:24
文档

直线倾斜角与斜率

直线的倾斜角和斜率2005年5月7日来源:网友提供作者:未知字体:[大中小]【演示动画】观察直线变化,倾斜角变化,直线方程中系数变化的关系(1) 直线变化→α变化→中的系数变化   (同时注意α的变化).(2)中的x系数k变化→直线变化→α变化   (同时注意α的变化).教师引导学生观察,归纳,猜想出倾斜角与的系数的关系:倾斜角不同,方程中的系数不同,而且这个系数正是倾斜角的正切!【板书】定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率.记作,即.这样我们定义了一个从“形”的方
推荐度:
导读直线的倾斜角和斜率2005年5月7日来源:网友提供作者:未知字体:[大中小]【演示动画】观察直线变化,倾斜角变化,直线方程中系数变化的关系(1) 直线变化→α变化→中的系数变化   (同时注意α的变化).(2)中的x系数k变化→直线变化→α变化   (同时注意α的变化).教师引导学生观察,归纳,猜想出倾斜角与的系数的关系:倾斜角不同,方程中的系数不同,而且这个系数正是倾斜角的正切!【板书】定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率.记作,即.这样我们定义了一个从“形”的方
直线的倾斜角和斜率

2005年5月7日 来源:网友提供 作者:未知 字体:[大 中 小] 

【演示动画】

  观察直线变化,倾斜角变化,直线方程中 系数变化的关系

  (1)  直线变化→α变化→ 中的 系数 变化    (同时注意 α的变化).

  (2) 中的x系数k变化→直线变化→α变化    (同时注意 α的变化).

  教师引导学生观察,归纳,猜想出倾斜角与 的系数的关系:倾斜角不同,方程中 的系数不同,而且这个系数正是倾斜角的正切!

【板书】

  定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率.记作 ,即 .

  这样我们定义了一个从“形”的方面刻画直线相对于 轴(正方向)倾斜程度的量——倾斜角,现在我们又定义一个从“数”的方面刻画直线相对于 轴(正方向)倾斜程度的量——斜率.

  指出下列直线的倾斜角和斜率:

  (1) =-     (2) = tg60°    (3) = tg(-30°)

  学生思考后回答,师生一起订正:(1)120°; (2)60°;(3)150°(为什么不是-30°呢?)

画图,指出倾斜角和斜率.

  结合图3(也可以演示动画),观察倾斜角变化时,斜率的变化情况.

  注意:当倾斜角为90°时,斜率不存在.

  α=0°      ←--→    =0

  0°<α<90° ←--→    >0

  α=90°     ←--→   不存在

  90°<α<180°←--→  <0

(四)直线过两点斜率公式的推导

【问题4】

  如果给定直线的倾斜角,我们当然可以根据斜率的定义 =tgα求出直线的斜率;

  如果给定直线上两点坐标,直线是确定的,倾斜角也是确定的,斜率就是确定的,那么又怎么求出直线的斜率呢?

  即已知两点P1(x1,y1)、P2(x2,y2)(其中x1≠x2),求直线P1P2的斜率.

思路分析:

  首先由学生提出思路,教师启发、引导:

  运用正切定义,解决问题.

  (1)正切函数定义是什么?(终边上任一点的纵坐标比横坐标.)

  (2)角α是“标准位置”吗?(不是.)

  (3)如何把角α放在“标准位置”?(平移向量 ,使P1与原点重合,得到新向量 .)

  (4)P的坐标是多少?(x2-x1,y2-y1)

  (5)直线的斜率是多少? =tgα= (x1≠x2)

  (6)如果P1 和P2的顺序不同,结果还一样吗?(一样).

  评价:注意公式中x1≠x2,即直线P1 P2不垂直x轴.因此当直线P1P2不垂直x轴时,由已知直线上任意两点的坐标可以求得斜率,而不需要求出倾斜角.

【练习】

  (1)直线的倾斜角为α,则直线的斜率为 α?

  (2)任意直线有倾斜角,则任意直线都有斜率?

  (3)直线 (-330°)的倾斜角和斜率分别是多少?

  (4)求经过两点 (0,0)、 (-1, )直线的倾斜角和斜率.

  (5)课本第37页练习第2、4题.

  教师巡视,观察学生情况,个别辅导,订正答案(答案略).

【总结】

  教师引导:首先回顾前边提出的问题是否都已解决.再看下边的问题:

  (1)直线倾斜角的概念要注意什么?

  (2)直线的倾斜角与斜率是一一对应吗?

  (3)已知两点坐标,如何求直线的斜率?斜率公式中脚标1和2有顺序吗?

学生边讨论边总结:

  (1)向上的方向,正方向,最小,正角.(2)不是,当α=90°时, α不存在.

  (3) = ( ),没有.

【作业】

  1.课本第37页习题7.1第3、4、5题.

  2.思考题

  (1)方程 是单位圆的方程吗?

  (2)你能说出过原点,倾斜角是45°的直线方程吗?

  (3)你能说出过原点,斜率是2的直线方程吗?

  (4)你能说出过(1,1)点,斜率是2的直线方程吗

文档

直线倾斜角与斜率

直线的倾斜角和斜率2005年5月7日来源:网友提供作者:未知字体:[大中小]【演示动画】观察直线变化,倾斜角变化,直线方程中系数变化的关系(1) 直线变化→α变化→中的系数变化   (同时注意α的变化).(2)中的x系数k变化→直线变化→α变化   (同时注意α的变化).教师引导学生观察,归纳,猜想出倾斜角与的系数的关系:倾斜角不同,方程中的系数不同,而且这个系数正是倾斜角的正切!【板书】定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率.记作,即.这样我们定义了一个从“形”的方
推荐度:
  • 热门焦点

最新推荐

猜你喜欢

热门推荐

专题
Top