学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.下列四幅图中,能表示两棵树在同一时刻太阳光下的影子的图是( )
A. . . .
2.如图,在中,∠C=90°,设∠A,∠B,∠C所对的边分别为a,b,c,则( )
A.c=bsinB .b=csinB .a=btanB .b=ctanB
3.如图,是⊙O的直径,点、在⊙O上,,则的大小为( )
A. . . .
4.如图所示的几何体是由四个完全相同的小正方体搭成的,它的俯视图是( )
A. . . .
5.为了解某地区九年级男生的身高情况,随机抽取了该地区1000名九年级男生的身高数据,统计结果如下.
身高 | ||||
人数 | 60 | 260 | 550 | 130 |
A.0.32 .0.55 .0.68 .0.87
6.下列事件中,是必然事件的是( )
A.从一个只有白球的盒子里摸出一个球是白球
B.任意买一张电影票,座位号是3的倍数
C.掷一枚质地均匀的硬币,正面向上
D.汽车走过一个红绿灯路口时,前方正好是绿灯
7.如图所示,过y轴正半轴上的任意一点P,作x轴的平行线,分别与反比例函数和的图象交于点A和点B,若点C是x轴上任意一点,连接,则的面积为( )
A.6 .7 .8 .14
8.如图,正方形的边长为4,以点为圆心,为半径画圆弧得到扇形(阴影部分,点在对角线上).若扇形正好是一个圆锥的侧面展开图,则该圆锥的底面圆的半径是( )
A. .1 . .
9.如图,抛物线y=ax2+bx+4交y轴于点A,交过点A且平行于x轴的直线于另一点B,交x轴于C,D两点(点C在点D右边),对称轴为直线x=,连接AC,AD,BC.若点B关于直线AC的对称点恰好落在线段OC上,下列结论中错误的是( )
A.点B坐标为(5,4) .AB=AD .a= .OC•OD=16
10.如图,为半圆O的直径,M,C是半圆上的三等分点,,与半圆O相切于点B.点P为上一动点(不与点A,M重合),直线交于点D,于点E,延长交于点F,则下列结论正确的个数有( )
①;②的长为;③;④;⑤为定值
A.2个 .3个 .4个 .5个
二、填空题
11.一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在岔路口随机选择一条路径,它获得食物的概率是_____.
12.如图,工人师傅用扳手拧形状为正六边形的螺帽,现测得扳手的开口宽度,则螺帽边长________cm.
13.如图是一个几何体的三视图,根据图中所示数据求得这个几何体的侧面积是________(结果保留).
14.如图,在平面直角坐标系中,点P在第一象限,与x轴、y轴都相切,且经过矩形的顶点C,与相交于点D.若的半径为5,点A的坐标是.则点D的坐标是______.
15.二次函数的图像过点,且与轴交于点,点在该抛物线的对称轴上,若是以为直角边的直角三角形,则点的坐标为__________.
三、解答题
16.已知抛物线经过点(1,﹣2),(﹣2,13).
(1)求a,b的值;
(2)若(5,),(m,)是抛物线上不同的两点,且,求m的值.
17.为了学生的安全,某校决定把一段如图所示的步梯路段进行改造.已知四边形为矩形,,其坡度为,将步梯改造为斜坡,其坡度为,求斜坡的长度.(结果精确到,参考数据:,)
18.如图,在中,,,.将以点B为中心,逆时针旋转,使边落在边延长线上.在图上画出直角边扫过的图形(用阴影表示),并求出它的面积.
19.一个不透明的盒子里装有除颜色外其余均相同的2个黑球和个白球,搅匀后从盒子里随机摸出一个球,摸到白球的概率为.
(1)求的值;
(2)所有球放入盒中,搅匀后随机从中摸出1个球,放回搅匀,再随机摸出第2个球,求两次摸球摸到一个白球和一个黑球的概率,请用画树状图或列表的方法进行说明.
20.如图,为⊙O的直径,为⊙O上一点,,垂足为,平分.
(1)求证:是⊙O的切线;
(2)若,,求的长.
21.阅读以下材料,并解决相应问题:
小明在课外学习时遇到这样一个问题:
定义:如果二次函数(,,是常数)与(,,,是常数)满足,,,则这两个函数互为“旋转函数”.求函数的旋转函数.小明是这样思考的,由函数可知,,,,根据,,,求出,,就能确定这个函数的旋转函数.
请思考小明的方法解决下面问题:
(1)写出函数的旋转函数
(2)若函数与互为旋转函数,求的值.
(3)已知函数的图象与x轴交于A,B两点,与y轴交于点C,点A,B,C关于原点的对称点分别是,,,试求证:经过点,,的二次函数与互为“旋转函数”.
22.如图,已知,是的平分线,A是射线上一点,.动点P从点A出发,以的速度沿水平向左作匀速运动,与此同时,动点Q从点O出发,也以的速度沿竖直向上作匀速运动.连接,交于点B.经过O,P,Q三点作圆,交于点C,连接,.设运动时间为,其中.
(1)求的值;
(2)是否存在实数,使得线段的长度最大?若存在,求出t的值;若不存在,说明理由.
(3)在点P,Q运动过程中(),四边形的面积是否变化.如果面积变化,请说出四边形面积变化的趋势;如果四边形面积不变化,请求出它的面积.
参
1.C
【分析】
在同一时刻,阳光下不同物体的影子同向,且不同物体的物高和影长成正比.
【详解】
因为两棵树的影子的方向相反,不可能为同一时刻太阳光下的影子,所以A、B选项错误;
因为在同一时刻太阳光下,树高与影长成正比,所以C选项正确,D选项错误;
故选C.
【点睛】
本题考查了相似三角形的运用,解题的关键是掌握在同一时刻,阳光下不同物体的影子同向,且不同物体的物高和影长成正比.
2.B
【分析】
根据三角函数的定义进行判断,即可解决问题.
【详解】
∵中,,、、所对的边分别为a、b、c
∴,即,则A选项不成立,B选项成立
,即,则C、D选项均不成立
故选:B.
【点睛】
本题考查了三角函数的定义,熟记定义是解题关键.
3.B
【分析】
根据同弧所对的圆心角等于圆周角的2倍得到∠BOC=2∠BDC=40°,即可求出答案.
【详解】
∵,
∴∠BOC=2∠BDC=40°,
∴∠AOC=180°-∠BOC=140°,
故选:B.
【点睛】
此题考查了圆周角定理:同弧所对的圆心角等于圆周角的2倍,邻补角的定义.
4.C
【分析】
找到从上面看所得到的图形即可,所有的看到的棱都应表现在俯视图中.
【详解】
解:从上面看易得俯视图:
.
故选:C.
【点睛】
本题考查几何体的俯视图,关键在于牢记俯视图的定义.
5.C
【分析】
先计算出样本中身高不低于170cm的频率,然后根据利用频率估计概率求解.
【详解】
解:样本中身高不低于170cm的频率,
所以估计抽查该地区一名九年级男生的身高不低于170cm的概率是0.68.
故选:C.
【点睛】
本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.
6.A
【分析】
根据概率事件的定义理解逐一判断即可.
【详解】
A:只有白球的盒子里摸出的球一定是白球,故此选项正确
B:任意买一张电影票,座位号是随机的,是随机事件,故此选项错误
C:掷一枚质地均匀的硬币,正面向上的概率为,是随机事件,故此选项错误
D:汽车走过一个红绿灯路口时,绿灯的概率为,是随机事件,故此选项错误
故答案选A
【点睛】
本题主要考查了概率的事件分类问题,根据必然事件,在一定条件下,事件必然会发生的定义判断是解题的关键.
7.B
【分析】
根据两平行直线之间共底三角形的面积相等可知,当C点位于O点是,△ABC的面积与△ABO的面积相等,由此即可求解.
【详解】
解:∵AB∥x轴,且△ABC与△ABO共底边AB,
∴△ABC的面积等于△ABO的面积,
连接OA、OB,如下图所示:
则
.
故选:B.
【点睛】
本题考查了反比例函数的图形和性质,熟练掌握反比例函数上一点向坐标轴作垂线,与原点构成的矩形的面积为这个结论.
8.D
【分析】
根据题意,扇形ADE中弧DE的长即为圆锥底面圆的周长,即通过计算弧DE的长,再结合圆的周长公式进行计算即可得解.
【详解】
∵正方形的边长为4
∴
∵是正方形的对角线
∴
∴
∴圆锥底面周长为,解得
∴该圆锥的底面圆的半径是,
故选:D.
【点睛】
本题主要考查了扇形的弧长公式,圆的周长公式,正方形的性质以及圆锥的相关知识点,熟练掌握弧长公式及圆的周长公式是解决本题的关键.
9.D
【分析】
由抛物线y=ax2+bx+4交y轴于点A,可得点A的坐标,然后由抛物线的对称性可得点B的坐标,由点B关于直线AC的对称点恰好落在线段OC上,可知∠ACO=∠ACB,再结合平行线的性质可判断∠BAC=∠ACB,从而可知AB=AD;过点B作BE⊥x轴于点E,由勾股定理可得EC的长,则点C坐标可得,然后由对称性可得点D的坐标,则OC•OD的值可计算;由勾股定理可得AD的长,由交点式可得抛物线的解析式,根据以上计算或推理,对各个选项作出分析即可.
【详解】
解:因为抛物线y=ax2+bx+4交y轴于点A,所以A(0,4).因为对称轴为直线x=,AB∥x轴,所以B(5,4),选项A正确,不符合题意.如答图,过点B作BE⊥x轴于点E,则BE=4,AB=5.因为AB∥x轴,所以∠BAC=∠ACO.因为点B关于直线AC的对称点恰好落在线段OC上,所以∠ACO=∠ACB,所以∠BAC=∠ACB,所以BC=AB=5.在Rt△BCE中,由勾股定理得EC=3,所以C(8,0),因为对称轴为直线x=,所以D(-3,0).在Rt△ADO中,OA=4,OD=3,所以AD=5,所以AB=AD,选项B正确,不符合题意.设y=ax2+bx+4=a(x+3)(x-8),将A(0,4)代入得4=a(0+3)(0-8),解得a=,选项C正确,不符合题意.因为OC=8,OD=3,所以OC•OD=24,选项D错误,符合题意,因此本题选D.
【点睛】
本题考查了二次函数的性质、等腰三角形的判定与性质及勾股定理,熟练掌握二次函数的相关性质并数形结合是解题的关键.
10.B
【分析】
①连接AC,并延长AC,与BD的延长线交于点H,若PD=PB,得出P为的中点,与实际不符,即可判定正误;
②先求出∠BOC,再由弧长公式求得的长度,进而判断正误;
③由∠BOC=60°,得△OBC为等边三角形,再根据三线合一性质得∠OBE,再由角的和差关系得∠DBE,便可判断正误;
④证明∠CPB=∠CBF=30°,∠PCB=∠BCF,可得△BCF∽△PCB相似;
⑤由等边△OBC得BC=OB=4,再由相似三角形得CF•CP=BC2,便可判断正误.
【详解】
解:①连接AC,并延长AC,与BD的延长线交于点H,如图1,
∵M,C是半圆上的三等分点,
∴∠BAH=30°,
∵BD与半圆O相切于点B.
∴∠ABD=90°,
∴∠H=60°,
∵∠ACP=∠ABP,∠ACP=∠DCH,
∴∠PDB=∠H+∠DCH=∠ABP+60°,
∵∠PBD=90°-∠ABP,
若∠PDB=∠PBD,则∠ABP+60°=90°-∠ABP,
∴∠ABP=15°,
∴P点为的中点,这与P为上的一动点不完全吻合,
∴∠PDB不一定等于∠ABD,
∴PB不一定等于PD,
故①错误;
②∵M,C是半圆上的三等分点,
∴∠BOC=×180°=60°,
∵直径AB=8,
∴OB=OC=4,
∴的长度=,
故②正确;
③∵∠BOC=60°,OB=OC,
∴∠ABC=60°,OB=OC=BC,
∵BE⊥OC,
∴∠OBE=∠CBE=30°,
∵∠ABD=90°,
∴∠DBE=60°,
故③错误;
④∵M、C是的三等分点,
∴∠BPC=30°,
∵∠CBF=30°,
∠PCB=∠BCF,
∴△BCF∽△PCB
故④正确;
⑤∵∠CBF=∠CPB=30°,∠BCF=∠PCB,
∴△BCF∽△PCB,
∴,
∴CF•CP=CB2,
∵CB=OB=OC=AB=4,
∴CF•CP=16,
故⑤正确.
故选:B.
【点睛】
本题主要考查了切线的性质,圆周角定理,直角三角形的性质,等边三角形的性质与判定,等腰三角形的性质,相似三角形的性质与判定,关键是熟练掌握这些性质,并能灵活应用.
11.
【分析】
直接利用概率公式求解.
【详解】
解:蚂蚁获得食物的概率=.
故答案为:.
【点睛】
本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.
12.
【分析】
根据正六边形的性质,可得∠ABC=120°,AB=BC=a,根据等腰三角形的性质,可得CD的长,根据锐角三角函数的余弦,可得答案.
【详解】
解:如图:作BD⊥AC于D
由正六边形,得
∠ABC=120°,AB=BC=a,
∠BCD=∠BAC=30°.
由AC=3,得CD=.
cos∠BCD==,即,
解得a=,
故答案为:.
【点睛】
本题考查正多边形和圆,利用正六边形的性质得出等腰三角形是解题关键,又利用了正三角形的性质,余弦函数.
13.24π cm²
【分析】
根据三视图确定该几何体是圆柱体,再计算圆柱体的侧面积.
【详解】
解:先由三视图确定该几何体是圆柱体,底面半径是4÷2=2cm,高是6cm,
圆柱的侧面展开图是一个长方形,长方形的长是圆柱的底面周长,长方形的宽是圆柱的高,
且底面周长为:2π×2=4π(cm),
∴这个圆柱的侧面积是4π×6=24π(cm²).
故答案为:24π cm².
【点睛】
此题主要考查了由三视图确定几何体和求圆柱体的侧面积,关键是根据三视图确定该几何体是圆柱体.
14.(9,2).
【分析】
设圆与x轴,y轴的切点分别是E,F,连接EP,并延长,交AC于点N,连接FP,并延长,交BC于点M,连接PC,PD,利用切线的性质,垂径定理,勾股定理计算PM,CM的长即可.
【详解】
如图,设圆与x轴,y轴的切点分别是E,F,连接EP,并延长,交AC于点N,连接FP,并延长,交BC于点M,连接PC,PD,
∵与x轴、y轴都相切,
∴PE⊥OB,PF⊥OA,
∵FO⊥OE,PE=PF,
∴四边形PFOE是正方形,
∵的半径为5,
∴PE=PF=PC=PD=5,
∵四边形AOBC是矩形,
∴PN⊥AC,PM⊥BC,
∴四边形AOEN,四边形NEBC都是矩形,
∵点A的坐标是,
∴OA=EN=8,
∴AF=PN=CM=3,
∴NC==4,
∴AC=OB=AN+NC=9,
∵PM⊥BC,
∴CM=DM=3,
∴BD=BC-CD=8-6=2,
∴点D的坐标为(9,2).
故答案为:(9,2).
【点睛】
本题考查了切线的性质,正方形的判定,矩形的性质和判定,勾股定理,垂径定理,根据题意熟练运用切线的性质是解题的关键.
15.或
【分析】
先求出点B的坐标和抛物线的对称轴,然后分两种情况讨论:当∠ABM=90°时,如图1,过点M作MF⊥y轴于点F,易证△BFM∽△AOB,然后根据相似三角形的性质可求得BF的长,进而可得点M坐标;当∠BAM=90°时,辅助线的作法如图2,同样根据△BAE∽△AMH求出AH的长,继而可得点M坐标.
【详解】
解:对,当x=0时,y=3,∴点B坐标为(0,3),
抛物线的对称轴是直线:,
当∠ABM=90°时,如图1,过点M作MF⊥y轴于点F,则,
∵∠1+∠2=90°,∠2+∠3=90°,
∴∠1=∠3,
又∠MFB=∠BOA=90°,
∴△BFM∽△AOB,
∴,即,解得:BF=3,
∴OF=6,
∴点M的坐标是(,6);
当∠BAM=90°时,如图2,过点A作EH⊥x轴,过点M作MH⊥EH于点H,过点B作BE⊥EH于点E,则,
同上面的方法可得△BAE∽△AMH,
∴,即,解得:AH=9,
∴点M的坐标是(,﹣9);
综上,点M的坐标是或.
故答案为:或.
【点睛】
本题考查了抛物线与y轴的交点和对称轴、直角三角形的性质以及相似三角形的判定和性质等知识,属于常考题型,正确分类、熟练掌握相似三角形的判定和性质是解题的关键.
16.(1);(2)
【分析】
(1)将点的坐标分别代入解析式即可求得a,b的值;
(2)将(5,),(m,)代入解析式,联立即可求得m的值.
【详解】
(1)∵抛物线经过点(1,-2),(-2,13),
∴,解得,
∴a的值为1,b的值为-4;
(2)∵(5,),(m,)是抛物线上不同的两点,
∴,解得或(舍去)
∴m的值为-1.
【点睛】
本题主要考查二次函数性质,用待定系数法求二次函数,正确解出方程组求得未知数是解题的关键.
17.斜坡AF的长度为20.61米.
【分析】
先由DE的坡度计算DC的长度,根据矩形性质得AB长度,再由AF的坡度得出BF的长度,根据勾股定理计算出AF的长度.
【详解】
∵,其坡度为,
∴在中,
∴解得
∵四边形ABCD为矩形
∴
∵斜坡的坡度为
∴
∴
在中,(m)
∴斜坡的长度为20.61米.
【点睛】
本题考查了坡度的概念,及用勾股定理解直角三角形的用法,熟知以上知识点是解题的关键.
18.图见解析;9π.
【分析】
根据旋转的定义作图,根据旋转变换的性质可得△ABC与△A′BC′全等,从而得到阴影部分的面积=扇形ABA′的面积-小扇形CBC′的面积.
【详解】
解:作图如下,
根据旋转变换的性质,△ABC≌△A′BC′,
∵∠BCA=90°,∠BAC=30°,AB=6,
∴BC=AB=3,
∴阴影面积=
【点睛】
本题考查了扇形的面积计算,解题的关键是看出阴影部分的面积的表示等于两个扇形的面积的差,还考查了直角三角形中30°角所对的直角边等于斜边的一半的性质.
19.(1)1;(2).
【分析】
(1)根据概率公式列方程求解即可;
(2)先画出树状图确定所有情况数和所求情况数,然后再运用概率公式求解即可.
【详解】
解:(1)由题意得 ,解得n=1;
(2)根据题意画出树状图如下:
所以共有9种情况,其中两次摸球摸到一个白球和一个黑球有4种情况,则 两次摸球摸到一个白球和一个黑球的概率.
【点睛】
本题考查了概率公式的运用和利用树状图求概率,根据概率公式列方程和正确画出树状图是解答本题的关键.
20.(1)见解析(2)
【分析】
(1)连接OC,根据角平分线及等腰三角形的性质得到∠OCD=90°,即可求解;
(2)连接BC,在Rt△ADC中,利用cos∠1=∠CAB=,求出AC=5,再根据在Rt△ABC中,cos∠CAB=,即可求出AB的长.
【详解】
(1)证明:连接OC,
∵
∴∠ADC=90°
∴∠1+∠4=90°
∵AC平分∠DAB
∴∠1=∠2
又AO=OC,
∴∠2=∠3
∴∠1=∠3
∴∠4+∠3=90°
即∠OCD=90°
故OC⊥CD,OC是半径
∴是⊙O的切线;
(2)连接BC,
∵AB是直径,
∴∠ACB=90°
∵AC平分∠DAB,∠1=∠2
在Rt△ADC中,cos∠1=∠CAB=
又AD=4
∴AC=5
在Rt△ABC中,cos∠CAB=
∴AB=.
【点睛】
此题主要考查圆的切线的判定与性质综合,解题的关键是熟知切线的判定定理及三角函数的定义.
21.(1);(2)1;(3)证明过程见详解.
【分析】
(1)根据“旋转函数”的定义求出另一个函数的a、b、c的值,从而得出函数解析式;
(2)根据定义得出m和n的二元一次方程组,从而得出答案;
(3)首先求出A、B、C三点的坐标,然后得出对称点的坐标,从而求出函数解析式,然后根据新定义进行判定.
【详解】
解:(1)根据题意得,
解得
故解析式为:.
(2)根据题意得
∴
∴.
(3)根据题意得A(1,0),B(3,0),C(0,-6)
∴A1(−1,0),B1 (-3,0),C1 (0,6)
又
且经过点A1,B1,C1的二次函数为
∵
∴两个函数互为“旋转函数”.
【点睛】
本题考查了二次函数,新定义型;涉及了待定系数法,关于原点对称的点的坐标等知识,正确理解题意,熟练运用相关知识是解题的关键.
22.(1)8cm;(2)存在,t=4;(3)不变化,16cm2.
【分析】
(1)由题意得出OP=8-t,OQ=t,则可得出答案;
(2)如图,过点B作BD⊥OP,垂足为D,则BD∥OQ.设线段BD的长为x,则BD=OD=x,OB=BD=x,PD=8-t-x,得出,则 ,解出.由二次函数的性质可得出答案;
(3)证明△PCQ是等腰直角三角形.则.在Rt△POQ中,PQ2=OP2+OQ2=(8-t)2+t2.由四边形OPCQ的面积S=S△POQ+S△PCQ可得出答案.
【详解】
解:(1)由题意可得,OP=8-t,OQ=t,
∴OP+OQ=8-t+t=8(cm).
(2)当t=4时,线段OB的长度最大.
如图,过点B作BD⊥OP,垂足为D,则BD∥OQ.
∵OT平分∠MON,
∴∠BOD=∠OBD=45°,
∴BD=OD,OB=BD.
设线段BD的长为x,则BD=OD=x,OB=BD=x,PD=8-t-x,
∵BD∥OQ,
∴,
∴,
∴.
∴.
∵二次项系数小于0.
∴当t=4时,线段OB的长度最大,最大为2cm.
(3)∵∠POQ=90°,
∴PQ是圆的直径.
∴∠PCQ=90°.
∵∠PQC=∠POC=45°,
∴△PCQ是等腰直角三角形.
∴.
在Rt△POQ中,PQ2=OP2+OQ2=(8-t)2+t2.
∴四边形OPCQ的面积
.
∴四边形OPCQ的面积不变化,为16cm2.
【点睛】
本题是圆的综合题,考查了圆周角定理,等腰直角三角形的性质,平行线分线段成比例定理,三角形的面积,二次函数的性质等知识,熟练掌握圆的性质定理是解题的关键.