
一、选择题(10×5′=50′)
1.曲线y=x在点P(2,8)处的切线方程为 ( )
A.y=6x-12 B.y=12x-16 C.y=8x+10 D.y=12x-32
2.过原点与曲线y=相切的切线方程为 ( )
A.y=x B.y=2x C.y=x D.y=x
3.物体自由落体运动方程为s=s(t)= gt,g=9.8m/s,若v==g=9.8m/s.那么下列说法正确的是 ( )
A.9.8m/s是在1s这段时间内的速率
B.9.8m/s是从1s到(1+Δt)s这段时间内的速率
C.9.8m/s是物体在t=1 s这一时刻的速率
D.9.8m/s是物体从1 s到(1+Δt)s这段时间内的平均速率
4.已知过曲线y=x上点P的切线l的方程为12x-3y=16,那么P点坐标只能为 ( )
A. B. C. D.
5.一质点做直线运动,若它所经过的路程与时间的关系为:s(t)=4t-3(s单位:m,t单位:s),则t=5时的瞬时速率为 ( )
A.37 B.38 C.39 D.40
6.一个圆半径以0.1 cm/s速率增加,那么当半径r=10 cm时,此圆面积的增加速率(单位:cm/s)为 ( )
A.3π B.4π C.2π D.π
7.一圆面以10π cm/s的速率增加,那么当圆半径r=20 cm 时,其半径r的增加速率u为 ( )
A. cm/s B. cm/s C. cm/s D. cm/s
8.曲线y=x (n∈N)在点P(,2)处切线斜率为20,那么n为 ( )
A.7 B.6 C.5 D.4
9.直线a∥b,a处一面高墙,点P处站一人,P到直线a的距离PA=10 m,P到直线b的距离PB=2 m,在夜晚一光源S从B点向左运动,速率为5 m/s(沿直线b运动),那么,P点处的人投在墙a上影子Q的运动速率为 ( )
A.10 m/s B.15 m/s C.20 m/s D.25 m/s
第10题图
10.质点P在半径为r的圆周上逆时针方向做匀角速率运动,
角速率为1 rad/s.如图所示,设A为起点,那么t时刻点P在x
轴上射影点M的速率为 ( )
A.rsint B.-rsint C.rcost D.-rcost
二、填空题(4×4′=16′)
11.曲线y=x(x+1)(2-x)有两条平行于直线y=x的切线,则两切
线之间的距离是 .
12.函数S=esin(ωt+φ),那么S′t为 .
13.设曲线y=上有点P(x1,y1),与曲线切于点P的切线为m.若直线n过P且与m垂直,则称n为曲线在P处的法线,设n交x轴于Q,又作PR⊥x轴于R,则RQ的长是 .
14.设坐标平面上的抛物线y=x的图象为C,过第一象限的点(a,a)作C的切线l,则l与y轴的交点Q的坐标为 ,l与y轴夹角为30°时,a= .
三、解答题(4×10′+14′=54′)
15.A(1,c)为曲线y=x-ax+b上一点,曲线在A点处的切线方程为y=x+d,曲线斜率为1的切线有几条?它们之间的距离是多少?
16.已知抛物线C:y=x+2x和C:y=-x+a,如果直线l同时是C和C的切线,则得l为C1和C的公切线,公切线上两切点之间的线段称为公切线段.
(1)a取什么值时,C和C有且仅有一条公切线?写出此公切线方程;
(2)若C与C有两条公切线,证明相应的两条公切线段互相平分.
17.已知函数f(x)=ln(x+1)-x.
(1)求函数f (x)的单调递减区间;
(2)若x>-1,证明:1-≤ln(x+1)≤x.
第18题图
18.如图所示的是曲柄连杆装置,
(1)求滑块运动方程;
(2)求滑块运动速率.
19.质点运动方程s=f (t)实为位移s对时间t的函数,质点的运动速度即是对应的位移函数的导数s′=f ′(t).
(1)求质点运动s1=vt+s0和s2=at+vt+s0的运动速度并判定运动的性质.(v、a、s均为大于零的常数)
(2)已知某质点的运动方程为s=sin2πt,问此运动何时速度为0?
导数练习100分参
一、选择题
1.B 设所求切线斜率为k,那么,k===12,所以,所求切线方程为
y-8=12(x-2),整理得:y=12x-16.
2.A 设切点P(x,),那么切线斜率k=y′|=.又因为切线过点O(0,0),及点P,则k=,所以=.
解得x=2.所以斜率k=.从而切线方程为:y=x.
3.C
4.A 设P点坐标为,由导数几何意义可知:y′|=k=4,又因为y′|=x,
所以x=±2,所以点P 坐标为.
5.D 设物体在时刻5时的瞬时速度为:v(5)= .
6.C 当圆半径变化t s时,圆面积为S=πr,那么圆面积变化速率为v=S′=2πr·r′;又因为r′=0.1 cm/s.从而r=10 cm时,v=2π×10×0.1 cm/s=2π cm/s.
7.C 设t s时刻圆面积为S,则S=πr,时刻t圆面积增加速率为S′,对应半径增加速率
u=r′,S′=2πr·r′,此时S′=10π cm/s,r=20 cm.
由10π=2π×20×r′,从而r′= cm/s.
8.C 由导数的几何意义可知,曲线在P点处切线斜率k=y′,
∴20=y′|=n·() ①
然后采用试值法,可知当n=5时满足方程①.
9.D 设光源S运动路程为l,则SB=l=5t,此时影子Q运动路
程为x=AQ,又由于△APQ∽△BPS(如图).
从而,.
∴,∴x=25t,从而影子Q运动速率为v=x′=25.
10.B 点M的运动方程为x=rcost,那么点M的运动速率v=x′=-rsint.
二、填空题
11. 分析 从y′=1入手,写出两切线的方程.
解 y=-x+x+2x,∴y′=-3x+2x+2.所求直线与直线y=x平行.∴k=1.
命y′=1,即3x-2x-1=0,(3x+1)(x-1)=0,x=-或1,x=-时,
y=-(-)+-=-,x=1时,y=-1+1+2×1=2.
故切点为A,B(1,2)切线方程为:l:y+=x+,即x-y-=0,l:y-1=x-2,
即x-y+1=0,两切线间的距离为:d==.
12.S′=-2esin(ωt+φ)+ωecos(ωt+φ).
S′=(e)′sin(ωt+φ)+e (sin(ωt+φ))′=-2esin(ωt+φ)+eωcos(ωt+φ).
13. 由y′=得P(x,y)的切线斜率k=,
P点的法线斜率k=-,
∴法线方程为y-y=-2 (x-x),令y=0得x=,
即Q的横坐标为,|RQ|=|x-x|===.
点评 有关曲线切线的问题,一般都可用导数的几何意义完成,曲线在某一定点处的切线是惟一的,因此斜率也是惟一的(若存在的话),采用斜率相等这一重要关系,往往都可解决这类问题.
14.(0,-a), ∵y′=2x,y′|=2a,
∴l:y-a=2a(x-a),令x=0得y=-a,
∴Q(0,-a),由k=2a=tan(90°-30°)=,∴a=.
三、解答题
15.分析 根据题目条件可列出多个不等式,但要用它们解出全部4个未知系数是困难的,问题在于,要回答本题的两个问题,是否必须求出所有的未知系数,想到这里,便会豁然开朗.
(2)由(1)知,当x∈(-1,0)时,f ′(x)>0;当x∈(0,+∞)时,f ′(x)<0.
因此,当x>-1时,f(x)≤f(0),即ln(x+1)-x≤0.
∴ln(x+1)≤x.令g(x)=ln(x+1)+ -1,
则g′(x)= -.
当x∈(-1,0)时,g′(x)<0;当x∈(0,+∞)时,g′(x)>0.
∴当x>-1时,g(x)≥g(0),即ln(x+1)+ -1≥0,
∴ln(x+1)≥1-.
综上可知,当x>-1时,有1-≤ln(x+1)≤x.
18.解 (1)由图可知s=OC+CB.由三角函数定义可知:OC=rcosωt,CA=rsinωt,
所以,CB=,从而,
s=rcosωt+,此为滑块运动方程.
(2)s关于时间t的导数s′就是滑块运动速率v即
v=st′=(rcosωt+)′=-rωsinωt+,
v=-rωsinωt-
19.解 (1)s1′=v,s2′=at+v
s为匀速直线运动,速度为v;s为匀加速直线运动,加速度为a.
(2)s′=2πcos2πt.令s′=0,
即cos2πt=0,得2πt=kπ+,t=+.
