
数学
(考试时间:120分钟 满分:120分)
第Ⅰ卷
一、选择题(共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合要求的,用2B铅笔把答题卡上对应题目的答案标号涂黑)
1. 下列各数是有理数的是( )
A. B. C. D.
【答案】D
2. 如图是一个几何体的主视图,则该几何体是( )
A. B. C. D.
【答案】C
3. 如图,小明从入口进入博物馆参观,参观后可从,,三个出口走出,他恰好从出口走出的概率是( )
A. B. C. D.
【答案】B
4. 我国天问一号火星探测器于2021年5月15日成功着陆火星表面.经测算,地球跟火星最远距离千米,其中用科学记数法表示为( )
A. B. C. D.
【答案】C
5. 如图是某市一天的气温随时间变化的情况,下列说法正确的是( )
A. 这一天最低温度-4℃ B. 这一天12时温度最高 C. 最高温比最低温高8℃ D. 0时至8时气温呈下降趋势
【答案】A
6. 下列运算正确是( )
A. B. C. D.
【答案】A
7. 平面直角坐标系内与点关于原点对称的点的坐标是( )
A. B. C. D.
【答案】B
8. 如图,的半径为,于点,,则的长是( )
A. B. C. D.
【答案】C
9. 一次函数y=2x+1的图像不经过 ( )
A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限
【答案】D
10. 《九章算术》是人类科学史上应用数学的“算经之首”,书中记载:今有三人共车,二车空;二人共车,九人步.问:人与车各几何?译文:若人坐一辆车,则两辆车是空的;若人坐一辆车,则人需要步行.问:人与车各多少?设有辆车,人数为,根据题意可列方程组为( )
A. B. C. D.
【答案】B
11. 如图,矩形纸片,,点,分别在,上,把纸片如图沿折叠,点,的对应点分别为,,连接并延长交线段于点,则的值为( )
A. B. C. D.
【答案】A
12. 定义一种运算:,则不等式的解集是( )
A. 或 B. C. 或 D. 或
【答案】C
第Ⅱ卷
二、填空题(本大题共6小题,每小题3分,共18分)
13. 要使分式有意义,则x取值范围是_______.
【答案】x≠2
14. 分解因式:______.
【答案】
15. 如图,从楼顶处看楼下荷塘处的俯角为,看楼下荷塘处的俯角为,已知楼高为米,则荷塘的宽为__________米.(结果保留根号)
【答案】
16. 为了庆祝中国党成立周年,某校举行“党在我心中”演讲比赛,评委将从演讲内容,演讲能力,演讲效果三个方面给选手打分,各项成绩均按百分制计,然后再按演讲内容占,演讲能力占,演讲效果占,计算选手的综合成绩(百分制).小婷的三项成绩依次是,,,她的综合成绩是__________.
【答案】
17. 如图,从一块边长为,的菱形铁片上剪出一个扇形,这个扇形在以为圆心的圆上(阴影部分),且圆弧与,分别相切于点,,将剪下来的扇形围成一个圆锥,则圆锥的底面圆半径是__________.
【答案】
18. 如图,已知点,,两点,在抛物线上,向左或向右平移抛物线后,,的对应点分别为,,当四边形的周长最小时,抛物线的解析式为__________.
【答案】.
三、解答题(本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤)
19. 计算:.
【答案】-2
20. 解分式方程:.
【答案】
21. 如图,四边形中,,,连接.
(1)求证:;
(2)尺规作图:过点作的垂线,垂足为(不要求写作法,保留作图痕迹);
(3)在(2)的条件下,已知四边形的面积为,,求的长.
【答案】(1)证明见详解;(2)作图见详解;(3)CE=4.
22. 某水果公司以元/的成本价新进箱荔枝,每箱质量,在出售荔枝前,需要去掉损坏的荔枝,现随机抽取箱,去掉损坏荔枝后称得每箱的质量(单位:)如下:
| 整理数据: | 分析数据: | |||||||||
| 质量() | 平均数 | 众数 | 中位数 | |||||||
| 数量(箱) | ||||||||||
(2)平均数、众数、中位数都能反映这组数据的集中趋势,请根据以上样本数据分析的结果,任意选择其中一个统计量,估算这箱荔枝共损坏了多少千克?
(3)根据(2)中的结果,求该公司销售这批荔枝每千克定为多少元才不亏本?(结果保留一位小数)
【答案】(1)a=6,b=4.7,c=4.75;(2)500kg;(3)10.5元.
23. 【阅读理解】如图1,,的面积与的面积相等吗?为什么?
解:相等,在和中,分别作,,垂足分别,.
,
.
,
四边形是平行四边形,
.
又,,
.
【类比探究】问题①,如图2,在正方形的右侧作等腰,,,连接,求的面积.
解:过点作于点,连接.
请将余下的求解步骤补充完整.
【拓展应用】问题②,如图3,在正方形的右侧作正方形,点,,在同一直线上,,连接,,,直接写出的面积.
【答案】①;②.
24. 2022年北京冬奥会即将召开,激起了人们对冰雪运动的极大热情.如图是某跳台滑雪训练场的横截面示意图,取某一位置的水平线为轴,过跳台终点作水平线的垂线为轴,建立平面直角坐标系.图中的抛物线近似表示滑雪场地上的一座小山坡,某运动员从点正上方米处的点滑出,滑出后沿一段抛物线运动.
(1)当运动员运动到离处的水平距离为米时,离水平线的高度为米,求抛物线的函数解析式(不要求写出自变量的取值范围);
(2)在(1)的条件下,当运动员运动水平线的水平距离为多少米时,运动员与小山坡的竖直距离为米?
(3)当运动员运动到坡顶正上方,且与坡顶距离超过米时,求的取值范围.
【答案】(1);(2)12米;(3).
25. 如图①,在中,于点,,,点上一动点(不与点,重合),在内作矩形,点在上,点,在上,设,连接.
(1)当矩形是正方形时,直接写出的长;
(2)设的面积为,矩形的面积为,令,求关于的函数解析式(不要求写出自变量的取值范围);
(3)如图②,点是(2)中得到的函数图象上的任意一点,过点的直线分别与轴正半轴,轴正半轴交于,两点,求面积的最小值,并说明理由.
【答案】(1);(2);(3)6
26. 如图,已知,是的直径,,与的边,分别交于点,,连接并延长,与的延长线交于点,.
(1)求证:是的切线;
(2)若,求的值;
(3)在(2)的条件下,若的平分线交于点,连接交于点,求的值.
【答案】(1)见解析;(2);(3).
