最新文章专题视频专题问答1问答10问答100问答1000问答2000关键字专题1关键字专题50关键字专题500关键字专题1500TAG最新视频文章推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37视频文章20视频文章30视频文章40视频文章50视频文章60 视频文章70视频文章80视频文章90视频文章100视频文章120视频文章140 视频2关键字专题关键字专题tag2tag3文章专题文章专题2文章索引1文章索引2文章索引3文章索引4文章索引5123456789101112131415文章专题3
当前位置: 首页 - 正文

复合材料的无损检测技术

来源:动视网 责编:小OO 时间:2025-09-30 22:25:29
文档

复合材料的无损检测技术

复合材料的无损检测技术复合材料(compositematerials)是指由两种或两种以上不同性能、不同形态的组分通过复合工艺组合而成的一种多相材料,它既保持了原组分材料的主要特点又显示了原组分材料所没有的新性能。复合材料是应用现代技术发展涌现出的具有极大生命力的材料,具有刚度大、强度高、重量轻的优点,而且可根据使用条件的要求进行设计和制造,以满足各种特殊用途,从而极大地提高工程结构的效能,已成为一种当代新型的工程材料。然而由于复合材料的非均质性和各项异性,在制造过程中工艺不稳定,极易产生缺陷
推荐度:
导读复合材料的无损检测技术复合材料(compositematerials)是指由两种或两种以上不同性能、不同形态的组分通过复合工艺组合而成的一种多相材料,它既保持了原组分材料的主要特点又显示了原组分材料所没有的新性能。复合材料是应用现代技术发展涌现出的具有极大生命力的材料,具有刚度大、强度高、重量轻的优点,而且可根据使用条件的要求进行设计和制造,以满足各种特殊用途,从而极大地提高工程结构的效能,已成为一种当代新型的工程材料。然而由于复合材料的非均质性和各项异性,在制造过程中工艺不稳定,极易产生缺陷
复合材料的无损检测技术

 复合材料(composite materials)是指由两种或两种以上不同性能、不同形态的组分通过复合工艺组合而成的一种多相材料,它既保持了原组分材料的主要特点又显示了原组分材料所没有的新性能。复合材料是应用现代技术发展涌现出的具有极大生命力的材料,具有刚度大、强度高、重量轻的优点,而且可根据使用条件的要求进行设计和制造,以满足各种特殊用途,从而极大地提高工程结构的效能,已成为一种当代新型的工程材料。

  然而由于复合材料的非均质性和各项异性,在制造过程中工艺不稳定,极易产生缺陷。在应用过程中,由于疲劳累积、撞击、腐蚀等物理化学的因素影响,复合材料也容易产生缺陷,这些缺陷很大一部分还是产生在复合材料内部。

复合材料在制造过程中的主要缺陷有: 气孔、分层、疏松、越层裂纹、界面分离、夹杂、树脂固化不良、钻孔损伤;在使用过程中的主要缺陷有:疲劳损伤和环境损伤,损伤的形式有脱胶、分层、基本龟裂、空隙增长、纤维断裂、皱褶变形、腐蚀坑、划伤、下陷、烧伤等。

  由于复合材料在使用工程中承担着重要作用,因此在材料进入市场前,应该进行严格的缺陷检测,这是对使用者和加工者负责的行为。相应的,复合材料检测技术也得到了快速的发展,在检测技术中无损检测技术发展尤为突出。下面就主要的复合材料无损检测技术作简要的概述:

一、射线检测技术

1.X射线检测法

  X射线无损探伤是检测复合材料损伤的常用方法。目前常用的是胶片照相法,它是检查复合材料中孔隙和夹杂物等体积型缺陷的优良方法,对增强剂分布不均也有一定的检出能力,因此是一种不可缺少的检测手段。该方法检测分层缺陷很困难,一般只有当裂纹平面与射线束大致平行时方能检出,所以该法通常只能检测与试样表面垂直的裂纹,可与超声反射法互补。中北大学电子测试国防重点实验室的研究人员将X射线与现代测试理论相结合,在数字图像处理阶段,通过小波变换与图像分解理论,将一幅图像分解为大小、位置和方向都不同的分量,改变小波变换域中的某些参数的大小,实时地识别出X射线图像的内部缺陷。

2.计算机层析照相检测法

  计算机层析照相(CT)应用于复合材料研究已有十多年历史。这项工作的开展首先利用的是医用CT扫描装置,由于复合材料和非金属材料元素组成与人体相近,医用CT非常适合于复合材料和非金属材料内部非微观(相对于电子显微镜及金相分析)缺陷的检测及密度分布的测量,但医用CT不适合检测大尺寸、高密度(如金属件)的物体,为此八十年代初,美国RACOR公司率先研制出用于检测大型固体火箭发动机和小型精密铸件的工业CT。CT主要用于检测非微观缺陷(裂纹、夹杂物、气孔和分层等);测量密度分布(材料均匀性、复合材料微气孔含量);精确测量内部结构尺寸(如发动机叶片壁厚);检测装配结构和多余物;三维成像与CAD /CAM等制造技术结合而形成的所谓反馈工程(RE)。航天材料及工艺研究所的研究人员用这种方法对碳/碳复合材料的研究表明, CT检测技术的空间分辨率和密度分辨率完全可以满足碳/碳复合材料内部缺陷的检出要求,但应注意伪像与产品自身缺陷的区别,以避免产生误检。

3.微博检测法

  微波无损检测的基本原理是综合利用微波与物质的相互作用,一方面,微波在不连续面产生反射、散射和透射;另一方面,微波还能与被检材料产生相互作用,此时微波均会受到材料中的电磁参数和几何参数的影响,通过测量微波信号基本参数的改变,即可达到检测材料内部缺陷的目的。微波检测复合材料是在检测金属材料的基础上改进来的,这种方法不仅能检测复合材料的体积缺陷,同时还可以检测出平面缺陷,灵敏度较高,适用于在线检测的

要求。

4.红外热波法

  红外热波无损检测的工作原理是根据变化性热源与媒介材料及其几何结构之间的相互作用,通过控制热激励并适时监测和记录材料表面的温场变化,经过特殊的算法和图像处理来获取被检物体材料的均匀性信息及其表面下的结构及热属性的特征信息,从而达到检测和探伤的目的。此检测法具有非接触、实时、高效、直观的特点,分为主动式(有源红外)检测法和被动式(无源红外)检测法两种。首都师范大学陈大鹏等研究人员利用超声热红外技术对一个碳纤维复合材料T形接头和一块埋有裂纹缺陷的有机玻璃板进行检测,说明了红外热超声无损检测技术具有灵敏快速的优点,适合于对多种材料进行实时检测。

二、超声检测技术

超声波在复合材料内部传播过程中遇到材料内部缺陷时,由于缺陷的声阻抗与材料的声阻抗不同,超声波在缺陷处被反射(或散射),而出现缺陷波信号,根据超声反射信号幅度,可检测材料内部缺陷。此法能够检测出复合材料中的裂纹、脱粘、孔隙、分层等缺陷,但存在检测盲区。

1.超声脉冲反射法

  超声波在复合材料内部传播过程中遇到材料内部缺陷时,由于缺陷的声阻抗与材料的声阻抗不同,超声波在缺陷处被反射(或散射),而出现缺陷波信号,根据超声反射信号幅度,可检测材料内部缺陷。此法能够检测出复合材料中的裂纹、脱粘、孔隙、分层等缺陷,但存在检测盲区。

2.超声脉冲透射法

  该方法原理与超声脉冲反射法基本相同,由于超声波在缺陷处被反射或散肘.造成超声穿透信号的能量衰减。而后根据超声穿透信号幅度检测材料的内部缺陷。这种方法对复合材料中贫胶、疏松等缺陷的检测效果良好。

3.扫描超声显微镜技术

利用表面超声波束的传播行为,探测到在物体中声波传送持性(衰减和速度)的改变,将此信号通过计算机控制处理,在扫描显示器可以显示平面图形。利用该技术能够实时监测像金属基复合材料开孔制件在循环应力作用下逐渐破坏的过程。

超声检测技术的发展:八十年代中期,美国人首先利用兰姆波接触法对金属板/板胶接结构的性能和质量进行了检测试验,九十年代以来则更为集中地探索研究了复合材料层板、蜂窝夹层结构在液浸条件下的泄漏兰姆波检测技术。近年来,我们参考国外相关文献开展了树脂基碳纤维增强型复合材料层板的泄漏兰姆波C扫描检测技术研究,取得了理想的试验结果。

2007年,亚洲最大的复合材料生产基地在哈飞建成,随着该基地的建成,哈飞也陆续采购了一批国内外最先进的设备,其中包括英国超声波科学有限公司(USL)生产的超声波C扫描喷水复合材料检测系统。

目前, GE公司推出了便携式相控阵探伤仪 Phasor XS,使相控阵检测技术在无损检测中得到很大的推广,已在航空复合材料的检测、气轮机叶片(根部) 、涡轮圆盘的检测、石油天然气管道焊缝检测、火车轮轴检测、核电站检测等领域得到广泛运用。相控阵探伤仪能够通过图像的形式直观地显示缺陷,并通过线性B扫描图或扇形图显示一定区域范围内的缺陷,有利于对缺陷的评判。从应用效果来看,应用便携式相控阵探伤仪检测复合材料能极大地提高检测效率,提高检测准确性,节省检测成本。

三、声发射检测技术

  声发射是在材料局部因能量的快速释放而发出瞬态弹性波的现象,是材料在应力作用下的变形、形成裂纹与裂纹扩展。声发射波的频率范围很宽,从次声波、声波到超声波,其幅度从微观的位错运动到大规模的宏观断裂。弹性波在经介质传播后到达被检体表面,引起工件表面的机械振动。传感器将表面的瞬态位移转换成电信号,声发射信号经放大、处理后形成其特性参数,被记录与显示。经数据的解释,可评定声发射源的特性。

四、视觉检测技术

近年来计算机图像技术得到了快速发展,在复合材料无损检测技术上,一般与射线检测技术结合应用,具有直观,高效的特点,也是现在检测技术研究的一个热门方向。天津工业大学在三维编制复合材料检测中应用视觉检测技术的系统。其基于一类特殊的小波变换对三维编织复合材料拉伸断面进行图像处理、测量复合材料纤维体积含量的方法。通过实验及对比,得到了比传统边缘检测更加清晰连贯的图像。

五、传感器检测技术

1. 光纤传感器测试技术

  与传统的传感器相比,光纤应变传感器具有一系列的优点,如稳定性好、可靠性高、精度高、抗电磁干扰、结构简单、便于与光纤传输系统形成遥测网络而且不会破坏复合材料自身的完整性。因此,可以将其埋入或者贴在复合材料结构内,实现对复合材料结构长期和在线的实时检测。南京航空航天大学飞行器系的研究人员基于埋设在复合材料层板中的多方位多模光纤网络的特点,提出了检测层板内部发生多处横向冲击损伤的重构算法。根据光纤损伤图像检测系统获得的图像信号,可实时、定量、直观重构并显示出层板内部各处损伤的位置和各处的损伤程度。

2. 压电传感器复合材料脱层检测

  基于压电元件的在线检测方法是把压电元件使用环氧树脂或其他粘合剂直接贴到被测结构的表面或埋入层状结构。国外的Swann, Cynthia等研究人员研究了优化的压电传感器复合材料脱层检测。其研究表明,传感器的最佳位置是一个检测损伤复合材料结构的关键问题。其目的是利用最低数量的传感器,放置在正确的位置,以便从确定的传感器收到的电压信号来发现存在和受损程度。用统计模型,在板块中损伤分布的概率就能够确定。国内基于压电阵列,李刚、石利华等研究人员研究了兰姆波检测技术。

六、其他检测方法

1.液晶图像检测法

  该方法利用液晶随温度变化而变色的原理来进行检查,用抽真空将液晶薄膜紧贴在蜂窝结构下方外表蒙皮上(即靠近水的一方),再用加热器对液晶薄膜加温,有水的部位热量被水吸收,升温慢;无水的部位升温快,使得液晶薄膜上呈现与含水区域变化相对应的液晶图像。该方法检测除需要液晶薄膜外,还需真空袋、抽真空皮球及耦合剂等辅助材料,操作较复杂,且检测图像不能保存。Khatibi,Akbar Afaghi等研究人员研究了液晶热传感在复合材料分层无损检测中的应用。在这项研究中,一种新技术使用热变色液晶(薄层色谱)热介绍来评估这些机构。通过敏感的液态晶体产生温度梯度用于检测复合材料脱层标本。对组成材料和脱层大小/地点的影响进行调查。薄层热的结果与从红外热像得到的结果比较。最后,对新方法的优点/缺点进行了讨论。在这项研究基础上,得出结论,薄层色谱法热可作为一种廉价的非破坏性检验复合材料结构试验方法。

2.涡流检测法

  可用于检查碳纤维/环氧树脂复合材料表面、次表面的裂纹和纤维损伤。由于随着纤维编织排列花样和环氧树脂配比不同,材料电导率有差异,检测涡流场与碳纤维/环氧树脂的空间相关位置不同,电导率也不同。因而每块碳纤维/环氧树脂复合材料都有其不同的涡流场特性,直接影响涡流检测的检测灵敏度。由于以上特点,决定碳纤维/环氧树脂复合材料的涡流检测不同于金属涡流检测,人员需专门培训。

3.敲击法

  这是最常用的一类复合材料结构无损检测方法,最早是利用硬币、棒、小锤等物敲击蒙皮表面,仔细辨听声音差异来查找缺陷。在此基础上发展起来的智能敲击检测法是利用声振检测原理,通过数字敲击锤激励被检件产生机械振动,经测量被检件振动的特征来判定胶接构件的缺陷及测量胶接强度等,可用于蜂窝状结构检测、复合材料检测、胶接强度检测等。

4.激光全息无损检测法

  对被检测构件施加一定载荷后(力载荷或热载荷),构件表面的位移变化与材料内部是否存在分层性缺陷及构件的应力分布有关,内部存在分层性缺陷及应力集中区的位移量大于其他区域的位移量。

国内研究人员跟随国际上先进技术的发展方向,在复合材料无损检测研究领域进行了卓有成效的探索与研究,并取得了较好的研究成果。由于复合材料的应用与航空航天技术的发展有着密切的联系,所以国内在这方面研究较深入的主要单位有各航空航天相关的研究所及院校,如北航,南航,航空材料研究院。南京理工大学、浙江大学及中北大学在无损检测的理论方面都有较深入研究。西北工业大学在无损检测信号处理技术方面也做了不少工作。天津工业大学在三维编制复合材料的研究及其检测领域也开展了有益的研究并取得了不错的成绩。

文档

复合材料的无损检测技术

复合材料的无损检测技术复合材料(compositematerials)是指由两种或两种以上不同性能、不同形态的组分通过复合工艺组合而成的一种多相材料,它既保持了原组分材料的主要特点又显示了原组分材料所没有的新性能。复合材料是应用现代技术发展涌现出的具有极大生命力的材料,具有刚度大、强度高、重量轻的优点,而且可根据使用条件的要求进行设计和制造,以满足各种特殊用途,从而极大地提高工程结构的效能,已成为一种当代新型的工程材料。然而由于复合材料的非均质性和各项异性,在制造过程中工艺不稳定,极易产生缺陷
推荐度:
  • 热门焦点

最新推荐

猜你喜欢

热门推荐

专题
Top