1.已知点A是双曲线y=(k1>0)上一点,点A的横坐标为1,过点A作平行于y轴的直线,与x轴交于点B,与双曲线y=(k2<0)交于点C.点D(m,0)是x轴上一点,且位于直线AC右侧,E是AD的中点.
(1)如图1,当m=4时,求△ACD的面积(用含k1、k2的代数式表示);
(2)如图2,若点E恰好在双曲线y=(k1>0)上,求m的值;
(3)如图3,设线段EB的延长线与y轴的负半轴交于点F,当m=2时,若△BDF的面积为1,且CF∥AD,求k1的值,并直接写出线段CF的长.
2.Rt△ABC在直角坐标系中的位置如图所示,tan∠BAC=,反比例函数y=(k≠0)在第一象限内的图象与BC边交于点D(4,m),与AB边交于点E(2,n),△BDE的面积为2.
(1)求反比例函数和直线AB的解析式;
(2)设直线AB与y轴交于点F,点P是射线FD上一动点,是否存在点P使以E、F、P为顶点的三角形与△AEO相似?若存在,求点P的坐标;若不存在,请说明理由.
3.如图,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点D为对角线OB的中点,点E(4,n)在边AB上,反比例函数y=在第一象限内的图象经过点D、E,且tan∠BOA=.
(1)求反比例函数的解析式;
(2)若反比例函数的图象与矩形的边BC交于点F,将矩形折叠,使点O与点F重合,折痕分别与x、y轴正轴交于点H、G,求线段OG的长.
4已知点P(m,n)是反比例函数y=(x>0)图象上的动点,PA∥x轴,PB∥y轴,分别交反比例函数y=(x>0)的图象于点A、B,点C是直线y=2x上的一点.
(1)请用含m的代数式分别表示P、A、B三点的坐标;
(2)在点P运动过程中,连接AB,△PAB的面积是否变化,若不变,请求出△PAB的面积;若改变,请说明理由;
(3)在点P运动过程中,以点P、A、B、C为顶点的四边形能否为平行四边形,若能,请求出点P的坐标;若不能,请说明理由.
5.如图,正方形AOCB的边长为4,反比例函数的图象过点E(3,4).
(1)求反比例函数的解析式;
(2)反比例函数的图象与线段BC交于点D,直线y=-x+b过点D,与线段AB相交于点F,求点F的坐标;
(3)连接OF,OE,探究∠AOF与∠EOC的数量关系,并证明.
(4)若点P是x轴上的动点,点Q是(1)中的反比例在第一象限图象上的动点,且使得△PDQ为等腰直角三角形,直接写出点P的坐标.
6.如图,在平面直角坐标系中有Rt△ABC,∠A=90°,AB=AC,A(-2,0)、B(0,1)、C(d,2).
(1)求d的值;
(2)将△ABC沿x轴的正方向平移,在第一象限内B、C两点的对应点B′、C′ 正好落在某反比例函数图象上.请求出这个反比例函数和此时的直线B′C′ 的解析式;
(3)在(2)的条件下,设直线B′C′ 交y轴于点G.问是否存在x轴上的点M和反比例函数图象上的点P,使得四边形PGMC′ 是平行四边形.如果存在,请求出点M和点P的坐标;如果不存在,请说明理由.
7.如图1,已知直线y=-x+m与反比例函数y=的图象在第一象限内交于A、B两点(点A在点B的左侧),分别与x、y轴交于点C、D,AE⊥x轴于E.
(1)若OE·CE=12,求k的值;
(2)如图2,作BF⊥y轴于F,求证:EF∥CD;
(3)在(1)(2)的条件下,EF=,AB=2,P是x轴正半轴上一点,且△PAB是以P为直角顶点的等腰直角三角形,求P点的坐标.
8.已知一次函数y1=2x+m的图象与反比例函数y2=的图象交于A、B两点,且当x >1时,y1>y2;当0<x <1时,y1<y2.
(1)求一次函数的解析式;
(2)若反比例函数在第一象限的图象上有一点C到y轴的距离为3,求△ABC的面积;
(3)在直线AB上是否存在一点P,使△AOP∽△AOB,若存在,求P点坐标;若不存在,请说明理由.