最新文章专题视频专题问答1问答10问答100问答1000问答2000关键字专题1关键字专题50关键字专题500关键字专题1500TAG最新视频文章推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37视频文章20视频文章30视频文章40视频文章50视频文章60 视频文章70视频文章80视频文章90视频文章100视频文章120视频文章140 视频2关键字专题关键字专题tag2tag3文章专题文章专题2文章索引1文章索引2文章索引3文章索引4文章索引5123456789101112131415文章专题3
当前位置: 首页 - 正文

圆周角和圆心角的关系(第二课时)

来源:动视网 责编:小OO 时间:2025-09-30 22:23:44
文档

圆周角和圆心角的关系(第二课时)

§3.3圆周角和圆心角的关系(第二课时)学习目标:掌握圆周角定理几个推论的内容,会熟练运用推论解决问题.学习重点:圆周角定理几个推论的应用.学习难点:理解几个推论的”题设”和”结论”.学习方法:指导探索法.学习过程:一、举例:【例1】用直角钢尺检查某一工件是否恰好是半圆环形,根据图形3-3-19所表示的情形,四个工件哪一个肯定是半圆环形?【例2】如图,已知⊙O中,AB为直径,AB=10cm,弦AC=6cm,∠ACB的平分线交⊙O于D,求BC、AD和BD的长.【例3】如图所示,已知AB为⊙O的直
推荐度:
导读§3.3圆周角和圆心角的关系(第二课时)学习目标:掌握圆周角定理几个推论的内容,会熟练运用推论解决问题.学习重点:圆周角定理几个推论的应用.学习难点:理解几个推论的”题设”和”结论”.学习方法:指导探索法.学习过程:一、举例:【例1】用直角钢尺检查某一工件是否恰好是半圆环形,根据图形3-3-19所表示的情形,四个工件哪一个肯定是半圆环形?【例2】如图,已知⊙O中,AB为直径,AB=10cm,弦AC=6cm,∠ACB的平分线交⊙O于D,求BC、AD和BD的长.【例3】如图所示,已知AB为⊙O的直
§3.3  圆周角和圆心角的关系(第二课时)

学习目标:

  掌握圆周角定理几个推论的内容,会熟练运用推论解决问题.

学习重点:

圆周角定理几个推论的应用.

学习难点:

理解几个推论的”题设”和”结论”.

学习方法:

指导探索法.

学习过程:

一、举例:

【例1】用直角钢尺检查某一工件是否恰好是半圆环形,根据图形3-3-19所表示的情形,四个工件哪一个肯定是半圆环形?

【例2】如图,已知⊙O中,AB为直径,AB=10cm,弦AC=6cm,∠ACB的平分线交⊙O于D,求BC、AD和BD的长.

【例3】如图所示,已知AB为⊙O的直径,AC为弦,OD∥BC,交AC于D,BC=4cm.

(1)求证:AC⊥OD;

(2)求OD的长;

(3)若2sinA-1=0,求⊙O的直径.

【例4】四边形ABCD中,AB∥DC,BC=b,AB=AC=AD=a,如图3-3-15,求BD的长.

【例5】如图1,AB是半⊙O的直径,过A、B两点作半⊙O的弦,当两弦交点恰好落在半⊙O上C点时,则有AC·AC+BC·BC=AB2.

(1)如图2,若两弦交于点P在半⊙O内,则AP·AC+BP·BD=AB2是否成立?请说明理由.

(2)如图3,若两弦AC、BD的延长线交于P点,则AB2=        .参照(1)填写相应结论,并证明你填写结论的正确性.

二、练习:

1.在⊙O中,同弦所对的圆周角(      )

A.相等      B.互补         C.相等或互补       D.都不对

2.如图,在⊙O中,弦AD=弦DC,则图中相等的圆周角的对数是(      )

A.5对  B.6对  C.7对  D.8对

3.下列说法正确的是(      )

A.顶点在圆上的角是圆周角

B.两边都和圆相交的角是圆周角

C.圆心角是圆周角的2倍

D.圆周角度数等于它所对圆心角度数的一半

4.下列说法错误的是(      )

A.等弧所对圆周角相等    B.同弧所对圆周角相等

C.同圆中,相等的圆周角所对弧也相等.  D.同圆中,等弦所对的圆周角相等

5.如图4,AB是⊙O的直径,∠AOD是圆心角,∠BCD是圆周角.若∠BCD=25°,则∠AOD=            .

6.如图5,⊙O直径MN⊥AB于P,∠BMN=30°,则∠AON=        .

7.如图6,AB是⊙O的直径,=,∠A=25°,则∠BOD=            .

8.如图7,A、B、C是⊙O上三点,∠BAC的平分线AM交BC于点D,交⊙O于点M.若∠BAC=60°,∠ABC=50°,则∠CBM=            ,∠AMB=            .

9.⊙O中,若弦AB长2cm,弦心距为cm,则此弦所对的圆周角等于       .

10.如图8,⊙O中,两条弦AB⊥BC,AB=6,BC=8,求⊙O的半径.

11.如图9,AB是⊙O的直径,FB交⊙O于点G,FD⊥AB,垂足为D,FD交AG于E.求证:EF·DE=AE·EG.

12.如图,AB是半圆的直径,AC为弦,OD⊥AB,交AC于点D,垂足为O,⊙O的半径为4,OD=3,求CD的长.

13.如图,⊙O的弦AD⊥BC,垂足为E,∠BAD=∠α,∠CAD=∠β,且sinα=,cosβ=,AC=2,求(1)EC的长;(2)AD的长.

14.如图,在圆内接△ABC中,AB=AC,D是BC边上一点.

(1)求证:AB2=AD·AE;

(2)当D为BC延长线上一点时,第(1)小题的结论还成立吗?如果成立,请证明;如果不成立,请说明理由.

15.如图,已知BC为半圆的直径,O为圆心,D是的中点,四边形ABCD对角线AC、BD交于点E.

(1)求证:△ABE∽△DBC;

(2)已知BC=,CD=,求sin∠AEB的值;

(3)在(2)的条件下,求弦AB的长.

16.如图,以△ABC的BC边为直径的半圆交AB于D,交AC于E,过E点作EF⊥BC,垂足为F,且BF:FC=5:1,AB=8,AE=2,求EC的长.

文档

圆周角和圆心角的关系(第二课时)

§3.3圆周角和圆心角的关系(第二课时)学习目标:掌握圆周角定理几个推论的内容,会熟练运用推论解决问题.学习重点:圆周角定理几个推论的应用.学习难点:理解几个推论的”题设”和”结论”.学习方法:指导探索法.学习过程:一、举例:【例1】用直角钢尺检查某一工件是否恰好是半圆环形,根据图形3-3-19所表示的情形,四个工件哪一个肯定是半圆环形?【例2】如图,已知⊙O中,AB为直径,AB=10cm,弦AC=6cm,∠ACB的平分线交⊙O于D,求BC、AD和BD的长.【例3】如图所示,已知AB为⊙O的直
推荐度:
  • 热门焦点

最新推荐

猜你喜欢

热门推荐

专题
Top