∗
(450052)
(455000)
(100081)
x (t)=f(t,x(t),x(t−τ),x (t−τ))+p(t)τ
Fredholm k-
1
[1−6],[1–5] Mawhin[6]Krasnoselskii
x (t)=−a(t)y(t)+λh(t)f
y
t−τ(t)
,(1)
x
x (t)=f
t,x(t),x(t−τ),x (t−τ)
+p(t)(2)
f(t,x,y,z)∈C(R×R3,R),f(t+T,x,y,z)≡f(t,x,y,z),∀(x,y,z)∈
R3;τ∈R p(t)∈C(R,R),p(t+T)≡p(t),T>0
f f(t)=x(t)
a(t)−β(t)x(t)−
b(t)x(t−τ)−c(t)x (t−τ)
,p(t)≡0
200113120011018
∗(19371006)(1999000722)
90
27
(2)
f
x
f
[1–6]
k -
(2)
τ
2
E
Banach
S ⊂E
αE (S )=inf
δ>0
S
:S =
n i =1
S i ,
S i
diam E (S i )≤δ
,
(3)
αE S Kuratowski [8−10]
.E 1,E 2
Banach
D ⊂
E 1,A :D →E 2
k ≥0,
S ⊂D
αE 2 A (S )
≤kαE 1(S ),
(4)
A
D k -[8−10]
.L :dom L ⊂E 1→E 2Fredholm
[10]
B ⊂dom L ,sup r >0|rαE 1(B )≤αE 2 L (B )
l (L )=sup r >0|rαE 1(B )≤αE 2
L (B ) ,
B ⊂dom (L )
.
L :X →Y Fredholm X,Y Banach
Ω⊂X
N :Ω→Y
k -
k [7] L :X →Y Fredholm y ∈Y N :Ω→Y k - k (R 1) Lx =λNx +λy,∀x ∈∂Ω,∀λ∈(0,1),(R 2) QN (x )+Qy,x · QN (−x )+Qy,x <0, ∀x ∈Ker L ∩∂Ω, [·,·]Y ×X Q :Y →coker L x ∈Ω Lx =Nx +y . C T = x |x (t )∈C (R,R ),x (t +T )=x (t ) , x 0=max t ∈[0,T ] x (t ) ,C T · 0Banach C 1 T = x |x (t )∈C 1(R,R ),x (t )=x (t +T ) , ∀x ∈C 1T , x 1=max x 0, x 0 ,C 1 T · 1Banach X =C 1 T ,Y =C T ,L :dom L ⊂X →Y Lx =x ,N :X →Y Nx (t )= f t,x (t ),x (t −τ),x (t −τ) .L Fredholm Q :Y →Y/Im L Q (y )=1 T T 0 y (t )d t ,∀y ∈Y ,ker L = x |x ∈X,x =c,c ∈R , 1 91 Im L = y ∈Y T 0y (s )d s =0 Y dim ker L =codim Im L =dim Im Q = 1, L Fredholm (1) x (t ) Lx =Nx +P x . (H 1) k ∈[0,1), f (t,x,y,z )−f (t,x,y,z ) ≤k |z −z |. (H 2) M >0,x ≥y >M ∀(t,z )∈R ×R ,f (t,x,y,z )+p (t )>0(<0);x ≤y <−M ∀(t,z )∈R ×R , f (t,x,y,z )+p (t )<0(>0). 2(H 1)1)l (L )≥1;2)N :X →Y k -l (L ) N 1)∀B ⊂X η=αY L (B ) ≥0. C 1 T Y =C T ,B B C T · 0 αY (B )=0. (3) ∀ε>0, B 1,B 2,···,B m ⊂X B = m i =1 B i , diam Y (B i )<ε(i =1,2,···,m ).αY (L (B ))=η L (B i )⊂L (B ),(3)αY L (B i ) ≤η.ε>0, ∀i ∈{1,2,···,m }, A 1i ,A 2 i ,···,A m i i ⊂Y ,L (B j i )=m i j =1 A j i ,diam Y (A j i )≤η+ε. B j i = x |x ∈B i ,Lx ∈A j i , diam Y L (B j i ≤η+ε, B = m i =1m i j =1 B j i . ∀x,y ∈B j i , x −y 0= Lx −Ly 0≤η+ε, (5) diam Y (B i )<ε,diam Y (B j i )<ε.(5) diam X (B j i )≤η+ε, αX (B )≤η=αY L (B ) ,l (L )≥1. 2) f :[0,T ]×R 3→R B ⊂X N u :B →Y N u (x )(t )=f t,x (t ),x (t −τ),u (t −τ) , f {N u |u ∈X }B u · 0∀ε>0,∃δ(ε)>0, u ∈X ,x,x ∈B x −x 0<δ(ε) N u (x )−N u (x ) 0 <ε. δ (ε)=min δ(ε),ε , ∀Ω⊂B ,diam Y (Ω)<δ (ε) diam Y (N u (Ω))<ε. η=αX (B ),ε>0 (3) B 1,B 2,···,B m ⊂B m j =1 B j =B diam X (B j )<η+ε.(6) X =C 1 T Y =C T ,B X B Y ∀j ∈{1,2,···,m },B j Y αY (B j )=0. (3) ∀j ∈{1,2,···,m } B 1j ,B 2j ,···,B n (j ) j ⊂B j B j = n (j ) i =1 B i j , 92 27 diam Y (B i j )<δ (ε)(1≤j ≤m,1≤i ≤n (j )). diam Y N u (B i j ) ≤ε, (7) ∀x,u ∈B i j 1≤j ≤m,1≤i ≤n (j ) , Nx −Nu 0≤sup 0≤t ≤T f t,x (t ),x (t −τ),x (t −τ) −f t,u (t ),u (t −τ),u (t −τ) ≤ Nx −N u (x ) 0+ N u (x )−N u (u ) 0.(8) Nx −N u (x ) 0 =sup 0≤t ≤T f t,x (t ),x (t −τ),x (t −τ) −f t,x (t ),x (t −τ),u (t −τ) ≤k sup 0≤t ≤T x (t −τ)−u (t −τ) =k x (s )−u (s ) 0≤k x −u 1≤k diam X B i j . (9) (6),(9) Nx −N u (x ) 0 ≤kη+kε. (10) (7) ∀x,u ∈B i j 1≤j ≤m,1≤i ≤n (j ) , N u (x )−Nu 0= N u (x )−N u (u ) 0 ≤ε, (11) (8),(10) (11) ∀x,u ∈B i j 1≤j ≤m j ,1≤i ≤n (j ) , Nx −Nu 0≤ kη+(k +1)ε, εαY (NB )≤kαX (B ), N k -3 τ∈ − T 2,0 ∪(0,T 2) ∀x ∈C 1 T , T x (t )−x (t − τ) 2d t ≤ τ 2 1+| τ|T T 0 x (t ) 2 d t. (12) 1) τ∈ 0,T 2 , ∀r ∈[0,T ], T x (t )−x (t − τ) 2 d t = r +T r x (t )−x (t − τ) 2 d t = r +T r t t − τ x (σ)d σ 2 d t ≤ τ r +T r t t − τ x (σ) 2 d σd t ≤ τ r +T r − τ σ+ τσ x (σ) 2d t d σ= τ2 r +T r − τ x (σ) 2 d σ= τ2 r r − τ x (σ) 2 d σ+ τ2 r +T r x (σ) 2 d σ = τ2 r r − τ x (σ) 2d σ+ τ2 T 0 x (σ) 2 d σ. r [0,T] T 0 x (t )−x (t − τ) 2 d t ≤ τ 2 T x (σ) 2 d σ+min r ∈[0,T ] r r − τ x (σ) 2d σ . (13) 1 93 min r ∈[0,T ] r r − τ x (σ) 2 d σ τ≤ T 0 x (σ) 2 d σT r r − τ x (σ) 2d σ≤ τT T 0 x (σ) 2 d σ,(4) T 0 x (t )−x (t − τ) 2d t ≤ τ 2 1+ τT T x (σ) 2 d σ. 2) τ∈ − T 2,0 , T 0 x (t )−x (t − τ) 2d t = T − τ− τ x (s )−x (s + τ) 2 st = T x (s )−x (s −| τ|) 2 d s.(14) 1) (14) T x (t )−x (t − τ) 2d t ≤ τ 2 1+| τ|T T x (t ) 2 d t. 1 (H 1),(H 2) (A 1) a 1,a 2,a 3,a 4,∀(t,x,y,z )∈R ×R 3 f (t,x,y,z ) ≤f (t,x,y,z )+a 1|x |+a 2|y |+a 3|z |+a 4 f (t,x,y,z ) ≤−f (t,x,y,z )+a 1|x |+a 2|y |+a 3|z |+a 4; (A 2) δ=1−a 1T −a 2T −a 3>0 (2) Lx =λNx +λp ,λ∈(0,1),x ∈X , x (t )=λf t,x (t ),x (t −τ),x (t −τ) +λp (t ). (15) ξ∈[0,T ], x (ξ) ≤M 1, (16) M 1 λ x (t )t 0,t 1,x (t 0)=x (t 1)=0, x (t 0)≥x (t 0−τ),x (t 1)≤x (t 1−τ).x (t 0−τ)>M f t 0,x (t 0),x (t 0−τ),x (t 0−τ) +p (t 0)=0, H 2x (t 0−τ)≤M ;x (t 1−τ)<−M f t 1,x (t 1),x (t 1−τ),x (t 1−τ) +p (t 1)=0,(H 2)x (t 1−τ)≥−M , (16) (16),∀t ∈[0,T ],x (t )=x (ξ)+ t ξ x (t )d t , x (t ) ≤ x (ξ) + t ξ x (t ) d t ≤M 1+ T x (t ) d t. x 0≤M1+ T x (t) d t.(17) T 0 x (t) d t (15)0T 0= T 0f t,x(t),x(t−τ),x (t−τ) d t+ T p(t)d t, T 0f t,x(t),x(t−τ),x (t−τ) d t=− T p(t)d t≤ T p(t) d t.(18) (15),(17),(18)(A1) T 0 x (t) d t ≤ T f t,x(t),x(t−τ),x (t−τ) d t+ T p(t) d t ≤ T f t,x(t),x(t−τ),x (t−τ) d t+a1 T x(t) d t+a2 T x(t−τ) d t +a3 T x (t−τ) d t+a4T+ T p(t) d t ≤2 T p(t) d t+a1 T x(t) d t+a2 T−τ −τ x(t) d t+a3 T−τ −τ x (t) d t+a4T =2 T p(t) d t+a1 T x(t) d t+a2 T x(t) d t+a3 T x (t) d t+a4T ≤2 T p(t) d t+(a1+a2)T x 0+a3 T x (t) d t+a4T ≤2 T p(t) d t+(a1+a2)T M1+ T x (t) d t +a3 T x (t) d t+a4T =2 T p(t) dt+(a1+a2)T M1+ (a1+a2)T+a3 T x (t) d t+a4T, [1−a1T−a2T−a3] T x (t) d t≤2 T p(t) d t+(a1+a2)T M1+a4T.(19) (A2) T x (t) d t≤M2(M2λ). x 0≤M1+ T x (t) d t≤M1+M2=M3. Ω= x(t): x 0 (R1),1(R2)Y×X[·,·] 1 95 [y,x ]= T y (t )x (t )d t Q :Y →coker L Q (y )= 1T T y (t )d t , ∀x ∈ker L ∩∂Ω, x |x |=M , QN (x )+Qy,x QN (−x )+Qy,x =M 2T 2 T 0 f (t,M,M,0)+p (t ) d t · T 0 f (t,−M,−M,0)+p (t ) d t.(H 2) (R 2)211 x ∈Ω, Lx =Nx +p , (2) T - f t,x (t ),x (t −τ),x (t −τ) =f 1 x (t ) +f 2 x (t −τ) +f 3 t,x (t −τ) , x (t )=f 1 x (t ) +f 2 x (t −τ) +f 3 t,x (t −τ) +p (t ). (20) 2(H 1),(H 2)(B 1) f 2(x 1)−f 2(x 2) ≤L |x 1−x 2|,∀x 1,x 2∈R ,L (B 2)τ∈ k ∈Z kT −δ,kT )∪(kT,kT +δ ,δ 0<δ< T 2 0<δ< 231−k L (20)x (t ) (15) (H 2) 1 x 0≤M 1+ T 0 x (t ) d t , T 0 x (t ) d t τ∈(kT,kT +δ],k ∈Z , τ =τ−kT ∈(0,δ].(20) x (t ) [0,T ] T 0 x (t ) 2d t = T 0f 1 x (t ) x (t )d t + T 0f 2 x (t −τ) x (t )d t + T f 3 x (t −τ) x (t )d t + T p (t )x (t )dt = T 0 f 2 x (t −τ) −f 2 x (t ) x (t )d t + T 0f 2 x (t ) x (t )d t + T f 3 t,x (t −τ) −f 3(t,0) x (t )d t + T 0f 3(t,0)x (t )d t + T p (t )x (t )d t ≤L T 0 x (t −τ)−x (t ) x (t ) d t +k T 0 x (t −τ) x (t ) d t +M 4 T x (t ) d t + p 0 T x (t ) d t ≤L T x (t −τ )−x (t ) 2d t 12 T |x (t )|2 d t 1 2 +k T x (t −τ ) 2d t ]1 2 T x (t ) 2d t 1 2 +M4 T x (t) d t+ p 0 T x (t) d t,(21) M4=max t∈[0,T] f3(t,0) ,3(21) T 0 x (t) 2 d t ≤L τ 2 1+ τ T T x (t) 2 d t 1 2 T x (t) 2 d t 1 2 +k T x (t) 2 d t+(M4+ p 0) T x (t) d t ≤Lτ 1+ τ T T x (t) 2 d t+k T x (t) 2 d t+(M4+ p 0) T x (t) d t ≤Lδ 1+ δ T T x (t) 2 d t+k T x (t) 2 d t+(M4+ p 0) T x (t) d t ≤ 3 2 Lδ T x (t) 2 d t+k T x (t) 2 d t+ M4+ p 0 T x (t) d t, 1− 3 2 Lδ−k T x (t) 2 d t≤ M4+ p 0 T x (t) d t.(22) 0<δ< 2 3 1−k L ,1− 2 3 Lδ−k>0,(22)λ M2>0, T x (t) d t≤M2.1 3(H1)-(H2)τ∈{jT,j∈Z}(20) x(t)(15)1 x 0≤M1+ T x (t) d t, T x (t) d t (20)x (t)0T T 0 x (t) 2 d t = T 0f1 x(t) x (t)d t+ T f2 x(t) x (t)d t+ T f3 t,x (t−τ) x (t)d t+ T p(t)x (t)d t = T 0f3 t,x (t) x (t)d t+ T p(t)x (t)d t = T f3 t,x (t) −f3(t,0) x (t)d t+ T f3(t,0)x (t)d t+ T p(t)x (t)d t ≤k T x (t) 2 d t+M4 T x (t) d t+ p 0 T x (t) d t, (1−k) T x (t) 2 d t≤ M4+ p 0 T x (t) d t.(23) 1 97 k <1, T 0 x (t ) 2 d t ≤ M 4+ p 01−k 2. 1 x (t )= 1 8πx (t )±112π x (t −τ)+g t,x (t ),x (t −τ),x (t −τ) +sin t,g (t,x,y,z )∈C (R ×R 3,R )z t 2π−g |∂g ∂z |<1.a 1=14π,a 2=16π,a 3=0,a 4=2g M g M =max g (t,x,y,z ) , f (t,x,y,z )+a 1|x |+a 2|y |+a 3|z |+a 4 =1 8πx ± 112πy +g (t,x,y,z )+14π|x |+16π |y |+2g M ≥1 8π|x |+ 112π |y |+g M ≥ f (t,x,y,z ) ,δ=1− 1 4π ·2π− 16π ·2π=1− 12 − 13 = 16 >0. 1 A 1 (H 1),(H 2) 1 n - Li´e nard ,1990,11(A):297–307 (Ge Weigao.Harmonic Solution of n -dimension Li´e nard Equation.Chinese Annals of Mathematics , 1990,11A(3):297–307) 2Ge Weigao.On the Existence of Harmonic Solution of Li´e nard system.Nonlinear Analysis,TMA , 1991,16(2):183–1903 Duffing x (t )+g (t,x (t −τ(t )))=p (t ) 2π ,1994,39(3):201–203 (Huang Xiankai,Xiang Zigui.On the Existence of 2π-periodic Solutions of Duffing Type Equation x (t )+g (t,x (t −τ(t )))=p (t ).Chinese Science Bulletin ,1994,39(3):201–203) 4 Li´e nard ,1998,18(4):565–570 (Li Yongkun.Periodic Solutions of the Li´e nard Equation with Deviating Arguments.J.Mathematical Research and Exposition ,1998,18(4):565–570)5Ma Shiwang,Wang Zhicheng,Yu Jianshe. Coincidence Degree and Periodic Solutions of Duffing Equations.Nonlinear Analysis ,1998,34:443–460 6Cheng S S,Zhang,G.Existence of Positive Non-autonomous Functional Differential Equations.Elec-tronic JDE ,2001,59:1–8 7Petryshyn W V,Yu Z S.Existence Theorems for Higher order Nonlinear Periodic Boundary Value Problems.Nonlinear Anal.,1982,9:943–9698Deimling K.Nonlinear Functional Analysis.Berlin:Springer-Verlag,19859 1985 (Guo Dajun.Nonlinear Functional Analysis.Jinan:Shandong Science and Technology Press,1985)10Gains R E,Mawhin J L.Coincidence Degree and Nonlinear Differential Equation.Lecture notes in Math.,No.568,Berlin:Springer-Verlag,1977 FOR NONLINEAR NEUTRAL DELAY DIFFERENTIAL EQUATION Ren Jingli (Department of Mathematics,Zhengzhou University,Zhengzhou450052) Ren Baoxian (Department of Computer Science,Anyang Teachers College,Anyang455000) Ge Weigao (Department of Mathematics,Beijing Institute of Technology,Beijing100081) Abstract By using the abstract continuity theorem,we study the problem of periodic solution of the nonlinear neutral differential equation x (t)=f(t,x(t),x(t−τ),x (t−τ))+p(t) and obtain sufficient conditions for the existence of periodic solutions related with delayτ. Key words Neutral differential equation,periodic solution,Fredholm operator, k-set contractive operator