最新文章专题视频专题问答1问答10问答100问答1000问答2000关键字专题1关键字专题50关键字专题500关键字专题1500TAG最新视频文章推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37视频文章20视频文章30视频文章40视频文章50视频文章60 视频文章70视频文章80视频文章90视频文章100视频文章120视频文章140 视频2关键字专题关键字专题tag2tag3文章专题文章专题2文章索引1文章索引2文章索引3文章索引4文章索引5123456789101112131415文章专题3
当前位置: 首页 - 正文

一类非线性中立型时滞微分方程周期解的存在性

来源:动视网 责编:小OO 时间:2025-09-30 22:24:34
文档

一类非线性中立型时滞微分方程周期解的存在性

271Vol.27No.120041ACTAMATHEMATICAEAPPLICATAESINICAJan.,2004∗(450052)(455000)(100081)x(t)=f(t,x(t),x(t−τ),x(t−τ))+p(t)τFredholmk-1[1−6],[1–5]Mawhin[6]Krasnoselskiix(t)=−a(t)y(t)+λh(t)fyt−τ(t),(1)xx(t)=ft,x(t),x(t−τ),x(t−τ)+p(t)(2)f(t,x,y,z)∈C(R×R3,R)
推荐度:
导读271Vol.27No.120041ACTAMATHEMATICAEAPPLICATAESINICAJan.,2004∗(450052)(455000)(100081)x(t)=f(t,x(t),x(t−τ),x(t−τ))+p(t)τFredholmk-1[1−6],[1–5]Mawhin[6]Krasnoselskiix(t)=−a(t)y(t)+λh(t)fyt−τ(t),(1)xx(t)=ft,x(t),x(t−τ),x(t−τ)+p(t)(2)f(t,x,y,z)∈C(R×R3,R)
271Vol.27No.1 20041ACTA MATHEMATICAE APPLICATAE SINICA Jan.,2004

(450052)

(455000)

(100081)

x (t)=f(t,x(t),x(t−τ),x (t−τ))+p(t)τ

Fredholm k-

1

[1−6],[1–5] Mawhin[6]Krasnoselskii

x (t)=−a(t)y(t)+λh(t)f

y

t−τ(t)

,(1)

x

x (t)=f

t,x(t),x(t−τ),x (t−τ)

+p(t)(2)

f(t,x,y,z)∈C(R×R3,R),f(t+T,x,y,z)≡f(t,x,y,z),∀(x,y,z)∈

R3;τ∈R p(t)∈C(R,R),p(t+T)≡p(t),T>0

f f(t)=x(t)

a(t)−β(t)x(t)−

b(t)x(t−τ)−c(t)x (t−τ)

,p(t)≡0

200113120011018

∗(19371006)(1999000722)

90

27

(2)

f

x

f

[1–6]

k -

(2)

τ

2

E

Banach

S ⊂E

αE (S )=inf

δ>0

S

:S =

n i =1

S i ,

S i

diam E (S i )≤δ

,

(3)

αE S Kuratowski [8−10]

.E 1,E 2

Banach

D ⊂

E 1,A :D →E 2

k ≥0,

S ⊂D

αE 2 A (S )

≤kαE 1(S ),

(4)

A

D k -[8−10]

.L :dom L ⊂E 1→E 2Fredholm

[10]

B ⊂dom L ,sup r >0|rαE 1(B )≤αE 2 L (B )

l (L )=sup r >0|rαE 1(B )≤αE 2

L (B ) ,

B ⊂dom (L )

.

L :X →Y Fredholm X,Y Banach

Ω⊂X

N :Ω→Y

k -

k 1

[7]

L :X →Y

Fredholm

y ∈Y

N :Ω→Y

k -

k 0∈Ω

(R 1)

Lx =λNx +λy,∀x ∈∂Ω,∀λ∈(0,1),(R 2)

QN (x )+Qy,x · QN (−x )+Qy,x

<0,

∀x ∈Ker L ∩∂Ω,

[·,·]Y ×X Q :Y →coker L x ∈Ω

Lx =Nx +y .

C T = x |x (t )∈C (R,R ),x (t +T )=x (t )

, x 0=max t ∈[0,T ]

x (t ) ,C T

· 0Banach C 1

T = x |x (t )∈C 1(R,R ),x (t )=x (t +T ) ,

∀x ∈C 1T , x 1=max x 0, x 0 ,C 1

T · 1Banach

X =C 1

T ,Y =C T ,L :dom L ⊂X →Y Lx =x ,N :X →Y Nx (t )=

f t,x (t ),x (t −τ),x (t −τ) .L

Fredholm

Q :Y →Y/Im L Q (y )=1

T T 0

y (t )d t ,∀y ∈Y ,ker L = x |x ∈X,x =c,c ∈R

,

1

91

Im L = y ∈Y T 0y (s )d s =0

Y

dim ker L =codim Im L =dim Im Q =

1,

L

Fredholm

(1)

x (t )

Lx =Nx +P x .

(H 1)

k ∈[0,1),

f (t,x,y,z )−f (t,x,y,z ) ≤k |z −z |.

(H 2)

M >0,x ≥y >M

∀(t,z )∈R ×R ,f (t,x,y,z )+p (t )>0(<0);x ≤y <−M

∀(t,z )∈R ×R ,

f (t,x,y,z )+p (t )<0(>0).

2(H 1)1)l (L )≥1;2)N :X →Y k -l (L )

N

1)∀B ⊂X

η=αY L (B )

≥0.

C 1

T

Y =C T ,B

B

C T

· 0

αY (B )=0.

(3)

∀ε>0,

B 1,B 2,···,B m ⊂X

B =

m

i =1

B i ,

diam Y (B i )<ε(i =1,2,···,m ).αY (L (B ))=η

L (B i )⊂L (B ),(3)αY L (B i )

≤η.ε>0,

∀i ∈{1,2,···,m },

A 1i ,A 2

i ,···,A m i i ⊂Y ,L (B j i )=m i j =1

A j i ,diam Y (A j i )≤η+ε.

B j

i

=

x |x ∈B i ,Lx ∈A j i

,

diam Y

L (B j i

≤η+ε,

B =

m i =1m i j =1

B j

i .

∀x,y ∈B j

i ,

x −y 0= Lx −Ly 0≤η+ε,

(5)

diam Y (B i )<ε,diam Y (B j

i )<ε.(5)

diam X (B j

i )≤η+ε,

αX (B )≤η=αY L (B )

,l (L )≥1.

2)

f :[0,T ]×R 3→R B ⊂X

N u :B →Y

N u (x )(t )=f t,x (t ),x (t −τ),u (t −τ)

,

f

{N u |u ∈X }B u · 0∀ε>0,∃δ(ε)>0,

u ∈X ,x,x ∈B x −x 0<δ(ε)

N u (x )−N u (x ) 0

<ε.

δ (ε)=min δ(ε),ε

,

∀Ω⊂B ,diam Y (Ω)<δ (ε)

diam Y (N u (Ω))<ε.

η=αX (B ),ε>0

(3)

B 1,B 2,···,B m ⊂B

m j =1

B j =B

diam X (B j )<η+ε.(6)

X =C 1

T Y =C T ,B

X

B Y

∀j ∈{1,2,···,m },B j Y

αY (B j )=0.

(3)

∀j ∈{1,2,···,m }

B 1j ,B 2j ,···,B n (j )

j

⊂B j B j =

n (j ) i =1

B i

j ,

92

27

diam Y (B i

j )<δ (ε)(1≤j ≤m,1≤i ≤n (j )).

diam Y N u (B i

j ) ≤ε,

(7)

∀x,u ∈B i

j

1≤j ≤m,1≤i ≤n (j ) , Nx −Nu 0≤sup 0≤t ≤T f t,x (t ),x (t −τ),x (t −τ) −f t,u (t ),u (t −τ),u (t −τ)

≤ Nx −N u (x ) 0+ N u (x )−N u (u ) 0.(8)

Nx −N u (x ) 0

=sup 0≤t ≤T

f t,x (t ),x (t −τ),x (t −τ) −f t,x (t ),x (t −τ),u (t −τ)

≤k sup 0≤t ≤T

x (t −τ)−u (t −τ)

=k x (s )−u (s ) 0≤k x −u 1≤k diam X B i

j .

(9)

(6),(9)

Nx −N u (x ) 0

≤kη+kε.

(10)

(7)

∀x,u ∈B i

j

1≤j ≤m,1≤i ≤n (j ) ,

N u (x )−Nu 0= N u (x )−N u (u ) 0

≤ε,

(11)

(8),(10)

(11)

∀x,u ∈B i

j

1≤j ≤m j ,1≤i ≤n (j ) , Nx −Nu 0≤

kη+(k +1)ε,

εαY (NB )≤kαX (B ),

N k -3

τ∈ −

T 2,0 ∪(0,T 2)

∀x ∈C 1

T ,

T

x (t )−x (t − τ) 2d t ≤ τ

2 1+| τ|T

T 0

x (t ) 2

d t.

(12)

1)

τ∈

0,T 2 ,

∀r ∈[0,T ],

T

x (t )−x (t − τ) 2

d t =

r +T

r

x (t )−x (t − τ) 2

d t =

r +T

r

t

t − τ

x

(σ)d σ

2

d t

≤ τ r +T

r

t

t − τ x (σ) 2

d σd t ≤

τ r +T

r − τ

σ+ τσ

x (σ)

2d t d σ=

τ2 r +T

r − τ

x (σ) 2

d σ= τ2

r

r − τ

x (σ) 2

d σ+ τ2

r +T

r x (σ) 2

d σ

= τ2

r r − τ

x (σ)

2d σ+ τ2

T 0

x

(σ) 2

d σ.

r

[0,T]

T

0 x (t )−x (t − τ) 2

d t ≤ τ

2

T

x (σ) 2

d σ+min

r ∈[0,T ]

r

r −

τ x (σ) 2d σ .

(13)

1

93

min

r ∈[0,T ]

r

r − τ

x (σ) 2

d σ

τ≤ T 0

x (σ) 2

d σT r

r −

τ x (σ) 2d σ≤ τT T 0

x (σ) 2

d σ,(4)

T

0 x (t )−x (t − τ) 2d t ≤ τ

2 1+ τT

T

x (σ) 2

d σ.

2) τ∈ −

T

2,0

,

T

0 x (t )−x (t − τ) 2d t =

T − τ− τ

x (s )−x (s + τ) 2

st =

T

x (s )−x (s −| τ|) 2

d s.(14)

1)

(14)

T

x (t )−x (t − τ) 2d t ≤ τ

2 1+| τ|T

T

x (t ) 2

d t.

1

(H 1),(H 2)

(A 1)

a 1,a 2,a 3,a 4,∀(t,x,y,z )∈R ×R 3

f (t,x,y,z )

≤f (t,x,y,z )+a 1|x |+a 2|y |+a 3|z |+a 4

f (t,x,y,z )

≤−f (t,x,y,z )+a 1|x |+a 2|y |+a 3|z |+a 4;

(A 2)

δ=1−a 1T −a 2T −a 3>0

(2)

Lx =λNx +λp ,λ∈(0,1),x ∈X ,

x (t )=λf t,x (t ),x (t −τ),x (t −τ)

+λp (t ).

(15)

ξ∈[0,T ], x (ξ)

≤M 1,

(16)

M 1

λ

x (t )t 0,t 1,x (t 0)=x (t 1)=0,

x (t 0)≥x (t 0−τ),x (t 1)≤x (t 1−τ).x (t 0−τ)>M f

t 0,x (t 0),x (t 0−τ),x (t 0−τ)

+p (t 0)=0,

H 2x (t 0−τ)≤M ;x (t 1−τ)<−M f t 1,x (t 1),x (t 1−τ),x (t 1−τ)

+p (t 1)=0,(H 2)x (t 1−τ)≥−M ,

(16)

(16),∀t ∈[0,T ],x (t )=x (ξ)+

t

ξ

x (t )d t ,

x (t ) ≤ x (ξ)

+

t

ξ x (t )

d t ≤M 1+

T

x (t ) d t.

x 0≤M1+ T

x (t)

d t.(17)

T 0

x (t)

d t

(15)0T

0=

T

0f

t,x(t),x(t−τ),x (t−τ)

d t+

T

p(t)d t,

T

0f

t,x(t),x(t−τ),x (t−τ)

d t=−

T

p(t)d t≤

T

p(t)

d t.(18)

(15),(17),(18)(A1)

T 0

x (t)

d t

≤ T

f

t,x(t),x(t−τ),x (t−τ)

d t+

T

p(t)

d t

≤ T

f

t,x(t),x(t−τ),x (t−τ)

d t+a1

T

x(t)

d t+a2

T

x(t−τ)

d t +a3

T

x (t−τ)

d t+a4T+

T

p(t)

d t

≤2 T

p(t)

d t+a1

T

x(t)

d t+a2

T−τ

−τ

x(t)

d t+a3

T−τ

−τ

x (t)

d t+a4T

=2

T

p(t)

d t+a1

T

x(t)

d t+a2

T

x(t)

d t+a3

T

x (t)

d t+a4T

≤2 T

p(t)

d t+(a1+a2)T x 0+a3

T

x (t)

d t+a4T

≤2 T

p(t)

d t+(a1+a2)T

M1+

T

x (t)

d t

+a3

T

x (t)

d t+a4T

=2

T

p(t)

dt+(a1+a2)T M1+

(a1+a2)T+a3

T

x (t)

d t+a4T,

[1−a1T−a2T−a3]

T

x (t)

d t≤2

T

p(t)

d t+(a1+a2)T M1+a4T.(19)

(A2) T

x (t)

d t≤M2(M2λ).

x 0≤M1+

T

x (t)

d t≤M1+M2=M3.

Ω=

x(t): x 0,M=max{M,M3}+1,Ω1

(R1),1(R2)Y×X[·,·]

1

95

[y,x ]=

T

y (t )x (t )d t Q :Y →coker L

Q (y )=

1T

T

y (t )d t ,

∀x ∈ker L ∩∂Ω,

x

|x |=M ,

QN (x )+Qy,x QN (−x )+Qy,x

=M

2T 2

T

0 f (t,M,M,0)+p (t ) d t · T 0

f (t,−M,−M,0)+p (t ) d t.(H 2)

(R 2)211

x ∈Ω,

Lx =Nx +p ,

(2)

T -

f t,x (t ),x (t −τ),x (t −τ) =f 1 x (t ) +f 2 x (t −τ) +f 3 t,x (t −τ)

,

x (t )=f 1 x (t ) +f 2 x (t −τ) +f 3 t,x (t −τ)

+p (t ).

(20)

2(H 1),(H 2)(B 1) f 2(x 1)−f 2(x 2)

≤L |x 1−x 2|,∀x 1,x 2∈R ,L

(B 2)τ∈ k ∈Z

kT −δ,kT )∪(kT,kT +δ ,δ

0<δ<

T

2

0<δ<

231−k L

(20)x (t )

(15)

(H 2)

1 x 0≤M 1+ T 0

x (t ) d t , T 0

x (t ) d t

τ∈(kT,kT +δ],k ∈Z ,

τ =τ−kT ∈(0,δ].(20)

x (t )

[0,T ]

T

0 x (t ) 2d t = T

0f 1

x (t )

x (t )d t +

T

0f 2 x (t −τ)

x

(t )d t +

T

f 3

x (t −τ)

x (t )d t +

T

p (t )x (t )dt

=

T 0 f 2 x (t −τ) −f 2 x (t )

x (t )d t +

T

0f 2 x (t )

x (t )d t

+

T

f 3 t,x

(t −τ) −f 3(t,0) x (t )d t +

T

0f 3(t,0)x

(t )d t +

T

p (t )x (t )d t

≤L

T 0

x (t −τ)−x (t )

x (t ) d t +k

T

0 x

(t −τ) x (t ) d t

+M 4

T

x (t )

d t + p 0

T

x (t ) d t

≤L

T

x (t −τ )−x (t ) 2d t

12

T

|x (t )|2

d t

1

2

+k

T

x (t −τ ) 2d t ]1

2

T

x (t ) 2d t 1

2

+M4

T

x (t)

d t+ p 0

T

x (t)

d t,(21)

M4=max

t∈[0,T]

f3(t,0)

,3(21)

T 0

x (t)

2

d t

≤L

τ 2

1+

τ

T

T

x (t)

2

d t

1

2

T

x (t)

2

d t

1

2

+k

T

x (t)

2

d t+(M4+ p 0)

T

x (t)

d t

≤Lτ

1+

τ

T

T

x (t)

2

d t+k

T

x (t)

2

d t+(M4+ p 0)

T

x (t)

d t

≤Lδ

1+

δ

T

T

x (t)

2

d t+k

T

x (t)

2

d t+(M4+ p 0)

T

x (t)

d t

3

2

T

x (t)

2

d t+k

T

x (t)

2

d t+

M4+ p 0

T

x (t)

d t,

1−

3

2

Lδ−k

T

x (t)

2

d t≤

M4+ p 0

T

x (t)

d t.(22)

0<δ<

2

3

1−k

L

,1−

2

3

Lδ−k>0,(22)λ

M2>0,

T

x (t)

d t≤M2.1

3(H1)-(H2)τ∈{jT,j∈Z}(20)

x(t)(15)1 x 0≤M1+

T

x (t)

d t,

T

x (t)

d t

(20)x (t)0T

T 0

x (t)

2

d t

=

T

0f1

x(t)

x (t)d t+

T

f2

x(t)

x (t)d t+

T

f3

t,x (t−τ)

x (t)d t+

T

p(t)x (t)d t

=

T

0f3

t,x (t)

x (t)d t+

T

p(t)x (t)d t

=

T

f3

t,x (t)

−f3(t,0)

x (t)d t+

T

f3(t,0)x (t)d t+

T

p(t)x (t)d t

≤k T

x (t)

2

d t+M4

T

x (t)

d t+ p 0

T

x (t)

d t,

(1−k)

T

x (t)

2

d t≤

M4+ p 0

T

x (t)

d t.(23)

1

97

k <1,

T 0

x (t ) 2

d t ≤ M 4+ p 01−k

2.

1

x (t )=

1

8πx (t )±112π

x (t −τ)+g t,x (t ),x (t −τ),x (t −τ) +sin t,g (t,x,y,z )∈C (R ×R 3,R )z t 2π−g

|∂g ∂z |<1.a 1=14π,a 2=16π,a 3=0,a 4=2g M g M =max g (t,x,y,z ) ,

f (t,x,y,z )+a 1|x |+a 2|y |+a 3|z |+a 4

=1

8πx ±

112πy +g (t,x,y,z )+14π|x |+16π

|y |+2g M ≥1

8π|x |+

112π

|y |+g M ≥ f (t,x,y,z ) ,δ=1−

1

·2π−

16π

·2π=1−

12

13

=

16

>0.

1

A 1

(H 1),(H 2)

1

n -

Li´e nard

,1990,11(A):297–307

(Ge Weigao.Harmonic Solution of

n -dimension Li´e nard Equation.Chinese Annals of Mathematics ,

1990,11A(3):297–307)

2Ge Weigao.On the Existence of Harmonic Solution of Li´e nard system.Nonlinear Analysis,TMA ,

1991,16(2):183–1903

Duffing

x (t )+g (t,x (t −τ(t )))=p (t )

,1994,39(3):201–203

(Huang Xiankai,Xiang Zigui.On the Existence of

2π-periodic Solutions of Duffing Type Equation

x

(t )+g (t,x (t −τ(t )))=p (t ).Chinese Science Bulletin ,1994,39(3):201–203)

4

Li´e nard

,1998,18(4):565–570

(Li Yongkun.Periodic Solutions of the Li´e nard Equation with Deviating Arguments.J.Mathematical Research and Exposition ,1998,18(4):565–570)5Ma Shiwang,Wang Zhicheng,Yu Jianshe.

Coincidence Degree and Periodic Solutions of Duffing

Equations.Nonlinear Analysis ,1998,34:443–460

6Cheng S S,Zhang,G.Existence of Positive Non-autonomous Functional Differential Equations.Elec-tronic JDE ,2001,59:1–8

7Petryshyn W V,Yu Z S.Existence Theorems for Higher order Nonlinear Periodic Boundary Value

Problems.Nonlinear Anal.,1982,9:943–9698Deimling K.Nonlinear Functional Analysis.Berlin:Springer-Verlag,19859

1985

(Guo Dajun.Nonlinear Functional Analysis.Jinan:Shandong Science and Technology Press,1985)10Gains R E,Mawhin J L.Coincidence Degree and Nonlinear Differential Equation.Lecture notes in

Math.,No.568,Berlin:Springer-Verlag,1977

FOR NONLINEAR NEUTRAL DELAY

DIFFERENTIAL EQUATION

Ren Jingli

(Department of Mathematics,Zhengzhou University,Zhengzhou450052)

Ren Baoxian

(Department of Computer Science,Anyang Teachers College,Anyang455000)

Ge Weigao

(Department of Mathematics,Beijing Institute of Technology,Beijing100081)

Abstract By using the abstract continuity theorem,we study the problem of periodic solution of the nonlinear neutral differential equation x (t)=f(t,x(t),x(t−τ),x (t−τ))+p(t) and obtain sufficient conditions for the existence of periodic solutions related with delayτ. Key words Neutral differential equation,periodic solution,Fredholm operator,

k-set contractive operator

文档

一类非线性中立型时滞微分方程周期解的存在性

271Vol.27No.120041ACTAMATHEMATICAEAPPLICATAESINICAJan.,2004∗(450052)(455000)(100081)x(t)=f(t,x(t),x(t−τ),x(t−τ))+p(t)τFredholmk-1[1−6],[1–5]Mawhin[6]Krasnoselskiix(t)=−a(t)y(t)+λh(t)fyt−τ(t),(1)xx(t)=ft,x(t),x(t−τ),x(t−τ)+p(t)(2)f(t,x,y,z)∈C(R×R3,R)
推荐度:
  • 热门焦点

最新推荐

猜你喜欢

热门推荐

专题
Top