名称:1960年至1992年居民的消费水平与可支配收入关系
一.实验目的:
掌握序列相关性的检验及处理方法
二.实验内容:
1.理论模型的设定:
Y=β+ βX+μ
2.样本数据的收集:
年份 | 消费 | 可支配收入 | 年份 | 消费 | 可支配收入 |
Y | X | Y | X | ||
1960 | 1432.6 | 1569.2 | 1977 | 2829.8 | 3115.4 |
1961 | 1461.5 | 1619.4 | 1978 | 2951.6 | 3276 |
1962 | 1533.8 | 1697.5 | 1979 | 3020.2 | 3365.5 |
1963 | 1596.6 | 1759.3 | 1980 | 3009.7 | 3385.7 |
19 | 1692.3 | 1885.8 | 1981 | 3046.4 | 34.9 |
1965 | 1799.1 | 2003.9 | 1982 | 3081.5 | 3495.6 |
1966 | 1902 | 2110.6 | 1983 | 3240.6 | 3562.8 |
1967 | 1958.6 | 2202.3 | 1984 | 3407.6 | 3855.4 |
1968 | 2070.2 | 2302.1 | 1985 | 3566.5 | 3972 |
1969 | 2147.5 | 2377.2 | 1986 | 3708.7 | 4101 |
1970 | 2197.8 | 2469 | 1987 | 3822.3 | 4168.2 |
1971 | 2279.5 | 2568.3 | 1988 | 3972.7 | 4332.1 |
1972 | 2415.9 | 2685.7 | 19 | 40.6 | 4416.8 |
1973 | 2532.6 | 2875.2 | 1990 | 4132.2 | 4498.2 |
1974 | 2514.7 | 2854.2 | 1991 | 4105.8 | 4500 |
1975 | 2570 | 2903.6 | 1992 | 4219.8 | 4626.7 |
1976 | 2714.3 | 3017.6 |
3.模型参数的估计:
通过OLS法建立消费与可支配收入之间的方程
EViews软件估计结果如表1.2
表1.2
Dependent Variable: Y | ||||
Method: Least Squares | ||||
Date: 12/12/10 Time: 19:03 | ||||
Sample: 1960 1992 | ||||
Included observations: 33 | ||||
Variable | Coefficient | Std. Error | t-Statistic | Prob. |
C | -52.91844 | 24.08305 | -2.197332 | 0.0356 |
X | 0.917932 | 0.007526 | 121.9632 | 0.0000 |
R-squared | 0.997920 | Mean dependent var | 2757.545 | |
Adjusted R-squared | 0.997853 | S.D. dependent var | 867.7769 | |
S.E. of regression | 40.20706 | Akaike info criterion | 10.28465 | |
Sum squared resid | 50114.84 | Schwarz criterion | 10.37535 | |
Log likelihood | -167.6968 | F-statistic | 14875.01 | |
Durbin-Watson stat | 0.788463 | Prob(F-statistic) | 0.000000 |
(-2.197) (121.963)
R²=0.9979 ²=0.9978 SE=40.2071 D.W.=0.7885
4.模型的检验(即进行序列相关性检验)
(1)做出残差项与时间的关系图如下:
图1
从残差项与时间t之间的关系图可以大致判断随机干扰项存在负序列相关性
对其滞后一期的残差项做散点图,如下
图2
由残差项及滞后一期的残差项的关系图可以看出,随机干扰项存在正序列相关性。
再由表1.2中的D.W.检验结果可知,在5%的显著性水平下,n=33,k=2(包括常数项),查表得=1.38, =1.51,由于D.W.=0.788463<,故随机干扰项存在正序列相关性。
(2),运用拉格朗日乘数检验,EViews软件估计2阶滞后残差项结果如表1.3
表1.3
Breusch-Godfrey Serial Correlation LM Test: | ||||
F-statistic | 7.839487 | Probability | 0.0018 | |
Obs*R-squared | 11.58053 | Probability | 0.003057 | |
Test Equation: | ||||
Dependent Variable: RESID | ||||
Method: Least Squares | ||||
Date: 12/12/10 Time: 19:39 | ||||
Variable | Coefficient | Std. Error | t-Statistic | Prob. |
C | -2.184127 | 20.10792 | -0.108620 | 0.9143 |
X | 0.000914 | 0.006292 | 0.145195 | 0.8856 |
RESID(-1) | 0.512506 | 0.184414 | 2.779105 | 0.0095 |
RESID(-2) | 0.130987 | 0.186567 | 0.7020 | 0.4882 |
R-squared | 0.350925 | Mean dependent var | -2.59E-13 | |
Adjusted R-squared | 0.283779 | S.D. dependent var | 39.57384 | |
S.E. of regression | 33.49127 | Akaike info criterion | 9.973659 | |
Sum squared resid | 32528.29 | Schwarz criterion | 10.15505 | |
Log likelihood | -160.5654 | F-statistic | 5.226324 | |
Durbin-Watson stat | 1.931951 | Prob(F-statistic) | 0.005236 |
=-2.184127+0.000914x+0.512506+0.130987
(-0.109) (0.145) (2.779) (0.702)
R²=0.350925
于是,LM=31*0.350925=10.878675,该值大于显著水平为5%,自由度为2的分布的临界值(2)=5.991,由此判断原模型存在2阶序列相关性,但由于的参数t检验不通过,即参数不显著,说明不存在2阶序列相关性。
5.运用广义差分法进行自相关的处理
(1)采用科奥-迭代法估计ρ
在EViews软件包下,1阶广义差分的估计结果如下表1.4
表1.4
Dependent Variable: Y | ||||
Method: Least Squares | ||||
Date: 12/12/10 Time: 19:50 | ||||
Sample(adjusted): 1961 1992 | ||||
Included observations: 32 after adjusting endpoints | ||||
Convergence achieved after 4 iterations | ||||
Variable | Coefficient | Std. Error | t-Statistic | Prob. |
C | -72.65161 | 51.16709 | -1.4198 | 0.1663 |
X | 0.917932 | 0.015163 | 60.270 | 0.0000 |
AR(1) | 0.581683 | 0.146190 | 3.9765 | 0.0004 |
R-squared | 0.998614 | Mean dependent var | 2798.950 | |
Adjusted R-squared | 0.998518 | S.D. dependent var | 847.75 | |
S.E. of regression | 32.1 | Akaike info criterion | 9.8115 | |
Sum squared resid | 308.82 | Schwarz criterion | 10.03553 | |
Log likelihood | -155.3698 | F-statistic | 10444.12 | |
Durbin-Watson stat | 2.179329 | Prob(F-statistic) | 0.000000 | |
Inverted AR Roots | .58 |
Ŷ=72.65161+0.917932*X+0.581683*AR(1)
(-1.4199) (60.8627) (3.977)
=0.998614 ²=0.998518 D.W.=2.179329
其中,AR(1)前的参数值即为随机干扰项的1阶序列相关系数。在5%的显著性水平下, =1.5 第一步,估计模型 =β+ρ+βX+βX+є 在EViews软件包下,得出如下表1.4 表1.4 Ŷ=-15.75714+0.7153*+0.738081*X-0.409750*X (-0.684) (4.472) (7.329) (-2.773) =0.998766 ²=0.998634 D.W.=1.4506 第二步,作差分变换 =+0.7153* X=X-0.409750*X 则, 关于X的OLS估计结果如表1.5所示: 表1.5 Ŷ=-53.94172+0.917932 X (-2.2395) (121.96) =0.997920 ²=0.9978853 D.W.=1.788463 在5%的显著性水平下,D.W.> =1.5,已不存在自相关。 为了与OLS估计的原模型进行比较,计算β: β=β/(1-ρ)=-53.94172/(1-0.7153)=-152.876 于是模型可表示为: Ŷ=-152.876+0.917932 X 可见,仅是截距项有差距,X前的参数没有差别
由上表可得出:Dependent Variable: Y Method: Least Squares Date: 12/12/10 Time: 19:53 Sample(adjusted): 1961 1992 Included observations: 32 after adjusting endpoints Variable Coefficient Std. Error t-Statistic Prob. C -15.75714 23.03522 -0.684045 0.4996 Y(-1) 0.7153 0.144717 4.471845 0.0001 X 0.738081 0.100705 7.329135 0.0000 X(-1) -0.409750 0.147759 -2.773091 0.0098 R-squared 0.998766 Mean dependent var 2798.950 Adjusted R-squared 0.998634 S.D. dependent var 847.75 S.E. of regression 31.34150 Akaike info criterion 9.844232 Sum squared resid 27504.11 Schwarz criterion 10.02745 Log likelihood -153.5077 F-statistic 7553.554 Durbin-Watson stat 1.4506 Prob(F-statistic) 0.000000
所以,Dependent Variable: Y1 Method: Least Squares Date: 12/12/10 Time: 19:59 Sample: 1960 1992 Included observations: 33 Variable Coefficient Std. Error t-Statistic Prob. C -53.94172 24.08600 -2.239547 0.0324 X1 0.917932 0.007526 121.9632 0.0000 R-squared 0.997920 Mean dependent var 2756.8 Adjusted R-squared 0.997853 S.D. dependent var 867.7769 S.E. of regression 40.20706 Akaike info criterion 10.28465 Sum squared resid 50114.84 Schwarz criterion 10.37535 Log likelihood -167.6968 F-statistic 14875.01 Durbin-Watson stat 1.788463 Prob(F-statistic) 0.000000