最新文章专题视频专题问答1问答10问答100问答1000问答2000关键字专题1关键字专题50关键字专题500关键字专题1500TAG最新视频文章推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37视频文章20视频文章30视频文章40视频文章50视频文章60 视频文章70视频文章80视频文章90视频文章100视频文章120视频文章140 视频2关键字专题关键字专题tag2tag3文章专题文章专题2文章索引1文章索引2文章索引3文章索引4文章索引5123456789101112131415文章专题3
当前位置: 首页 - 正文

高一数学下指数函数典型例题解析

来源:动视网 责编:小OO 时间:2025-09-30 21:13:14
文档

高一数学下指数函数典型例题解析

指数函数·例题解析 【例1】求下列函数的定义域与值域:解(1)定义域为x∈R且x≠2.值域y>0且y≠1.(2)由2x+2-1≥0,得定义域{x|x≥-2},值域为y≥0.(3)由3-3x-1≥0,得定义域是{x|x≤2},∵0≤3-3x-1<3,【例2】指数函数y=ax,y=bx,y=cx,y=dx的图像如图2.6-2所示,则a、b、c、d、1之间的大小关系是[]A.a<b<1<c<dB.a<b<1<d<cC.b<a<1<d<cD.c<d<1<a<b解选(c),在x轴上任取一点(x,0),则
推荐度:
导读指数函数·例题解析 【例1】求下列函数的定义域与值域:解(1)定义域为x∈R且x≠2.值域y>0且y≠1.(2)由2x+2-1≥0,得定义域{x|x≥-2},值域为y≥0.(3)由3-3x-1≥0,得定义域是{x|x≤2},∵0≤3-3x-1<3,【例2】指数函数y=ax,y=bx,y=cx,y=dx的图像如图2.6-2所示,则a、b、c、d、1之间的大小关系是[]A.a<b<1<c<dB.a<b<1<d<cC.b<a<1<d<cD.c<d<1<a<b解选(c),在x轴上任取一点(x,0),则
指数函数·例题解析

 

【例1】求下列函数的定义域与值域:

解  (1)定义域为x∈R且x≠2.值域y>0且y≠1.

(2)由2x+2-1≥0,得定义域{x|x≥-2},值域为y≥0.

(3)由3-3x-1≥0,得定义域是{x|x≤2},∵0≤3-3x-1<3,

【例2】指数函数y=ax,y=bx,y=cx,y=dx的图像如图2.6-2所示,则a、b、c、d、1之间的大小关系是

[    ]

A.a<b<1<c<d 

B.a<b<1<d<c

C. b<a<1<d<c 

D.c<d<1<a<b

解  选(c),在x轴上任取一点(x,0),则得b<a<1<d<c.

【例3】比较大小:

(3)4.54.1________3.73.6

解  (3)借助数4.53.6打桥,利用指数函数的单调性,4.54.1>4.53.6,作函数y1=4.5x,y2=3.7x的图像如图2.6-3,取x=3.6,得4.53.6>3.73.6

∴ 4.54.1>3.73.6.

说明  如何比较两个幂的大小:若不同底先化为同底的幂,再利用指数函数的单调性进行比较,如例2中的(1).若是两个不同底且指数也不同的幂比较大小时,有两个技巧,其一借助1作桥梁,如例2中的(2).其二构造一个新的幂作桥梁,这个新的幂具有与4.54.1同底与3.73.6同指数的特点,即为4.53.6(或3.74.1),如例2中的(3).

【例5】作出下列函数的图像:

(3)y=2|x-1|                   (4)y=|1-3x|

解  (2)y=2x-2的图像(如图2.6-5)是把函数y=2x的图像向下平移2个单位得到的.

解  (3)利用翻折变换,先作y=2|x|的图像,再把y=2|x|的图像向右平移1个单位,就得y=2|x-1|的图像(如图2.6-6).

解  (4)作函数y=3x的图像关于x轴的对称图像得y=-3x的图像,再把y=-3x的图像向上平移1个单位,保留其在x轴及x轴上方部分不变,把x轴下方的图像以x轴为对称轴翻折到x轴上方而得到.(如图2.6-7)

当x=0时,函数y有最大值为1.

(1)判断f(x)的奇偶性;

(2)求f(x)的值域;

(3)证明f(x)在区间(-∞,+∞)上是增函数.

解  (1)定义域是R.

∴函数f(x)为奇函数.

即f(x)的值域为(-1,1).

(3)设任意取两个值x1、x2∈(-∞,+∞)且x1<x2.f(x1)-f(x2)

文档

高一数学下指数函数典型例题解析

指数函数·例题解析 【例1】求下列函数的定义域与值域:解(1)定义域为x∈R且x≠2.值域y>0且y≠1.(2)由2x+2-1≥0,得定义域{x|x≥-2},值域为y≥0.(3)由3-3x-1≥0,得定义域是{x|x≤2},∵0≤3-3x-1<3,【例2】指数函数y=ax,y=bx,y=cx,y=dx的图像如图2.6-2所示,则a、b、c、d、1之间的大小关系是[]A.a<b<1<c<dB.a<b<1<d<cC.b<a<1<d<cD.c<d<1<a<b解选(c),在x轴上任取一点(x,0),则
推荐度:
  • 热门焦点

最新推荐

猜你喜欢

热门推荐

专题
Top