最新文章专题视频专题问答1问答10问答100问答1000问答2000关键字专题1关键字专题50关键字专题500关键字专题1500TAG最新视频文章推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37视频文章20视频文章30视频文章40视频文章50视频文章60 视频文章70视频文章80视频文章90视频文章100视频文章120视频文章140 视频2关键字专题关键字专题tag2tag3文章专题文章专题2文章索引1文章索引2文章索引3文章索引4文章索引5123456789101112131415文章专题3
当前位置: 首页 - 正文

人教版八年级数学上:第12章《全等三角形》单元测试(含答案)(含答案...

来源:动视网 责编:小OO 时间:2025-09-30 21:12:06
文档

人教版八年级数学上:第12章《全等三角形》单元测试(含答案)(含答案...

第12章全等三角形一、选择题1.如图,在△ABC中,∠ABC=45°,AC=8cm,F是高AD和BE的交点,则BF的长是()A.4cmB.6cmC.8cmD.9cm2.如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为()A.(﹣,1)B.(﹣1,)C.(,1)D.(﹣,﹣1)3.在连接A地与B地的线段上有四个不同的点D、G、K、Q,下列四幅图中的实线分别表示某人从A地到B地的不同行进路线(箭头表示行进的方向),则路程最长的行进路线图是()A.B.C.D.
推荐度:
导读第12章全等三角形一、选择题1.如图,在△ABC中,∠ABC=45°,AC=8cm,F是高AD和BE的交点,则BF的长是()A.4cmB.6cmC.8cmD.9cm2.如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为()A.(﹣,1)B.(﹣1,)C.(,1)D.(﹣,﹣1)3.在连接A地与B地的线段上有四个不同的点D、G、K、Q,下列四幅图中的实线分别表示某人从A地到B地的不同行进路线(箭头表示行进的方向),则路程最长的行进路线图是()A.B.C.D.
第12章 全等三角形

 

一、选择题

1.如图,在△ABC中,∠ABC=45°,AC=8cm,F是高AD和BE的交点,则BF的长是(  )

A.4cm    B.6cm    C.8cm    D.9cm

2.如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为(  )

A.(﹣,1)    B.(﹣1,)    C.(,1)    D.(﹣,﹣1)

3.在连接A地与B地的线段上有四个不同的点D、G、K、Q,下列四幅图中的实线分别表示某人从A地到B地的不同行进路线(箭头表示行进的方向),则路程最长的行进路线图是(  )

A.    B.C.    D.

4.如图,坐标平面上,△ABC与△DEF全等,其中A、B、C的对应顶点分别为D、E、F,且AB=BC=5.若A点的坐标为(﹣3,1),B、C两点在方程式y=﹣3的图形上,D、E两点在y轴上,则F点到y轴的距离为何?(  )

A.2    B.3    C.4    D.5

5.平面上有△ACD与△BCE,其中AD与BE相交于P点,如图.若AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,则∠BPD的度数为(  )

A.110°    B.125°    C.130°    D.155°

6.如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F.若AC=BD,AB=ED,BC=BE,则∠ACB等于(  )

A.∠EDB    B.∠BED    C.∠AFB    D.2∠ABF

7.如图,AB=4,射线BM和AB互相垂直,点D是AB上的一个动点,点E在射线BM上,BE=DB,作EF⊥DE并截取EF=DE,连结AF并延长交射线BM于点C.设BE=x,BC=y,则y关于x的函数解析式是(  )

A.y=﹣    B.y=﹣    C.y=﹣    D.y=﹣

8.如图,在四边形ABCD中,AB=AD=6,AB⊥BC,AD⊥CD,∠BAD=60°,点M、N分别在AB、AD边上,若AM:MB=AN:ND=1:2,则tan∠MCN=(  )

A.    B.    C.    D.﹣2

9.如图,点E在正方形ABCD的对角线AC上,且EC=2AE,直角三角形FEG的两直角边EF、EG分别交BC、DC于点M、N.若正方形ABCD的边长为a,则重叠部分四边形EMCN的面积为(  )

A. a2    B. a2    C. a2    D. a2

 

二、解答题(共21小题)

10.如图,已知AB∥DE,AB=DE,AF=CD,∠CEF=90°.

(1)若∠ECF=30°,CF=8,求CE的长;

(2)求证:△ABF≌△DEC;

(3)求证:四边形BCEF是矩形.

11.已知△ABC为等边三角形,D为AB边所在的直线上的动点,连接DC,以DC为边在DC两侧作等边△DCE和等边△DCF(点E在DC的右侧或上侧,点F在DC左侧或下侧),连接AE、BF

(1)如图1,若点D在AB边上,请你通过观察,测量,猜想线段AE、BF和AB有怎样的数量关系?并证明你的结论;

(2)如图2,若点D在AB的延长线上,其他条件不变,线段AE、BF和AB有怎样的数量关系?请直接写出结论(不需要证明);

(3)若点D在AB的反向延长线上,其他条件不变,请在图3中画出图形,探究线段AE、BF和AB有怎样的数量关系,并直接写出结论(不需要证明)

12.如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC.

(1)求证:△ABE≌DCE;

(2)当∠AEB=50°,求∠EBC的度数?

13.如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.

(1)求证:△ACD≌△AED;

(2)若∠B=30°,CD=1,求BD的长.

14.如图,点D,E在△ABC的边BC上,AB=AC,BD=CE.求证:AD=AE.

15.已知:如图,AD,BC相交于点O,OA=OD,AB∥CD.

求证:AB=CD.

16.如图,把一个直角三角形ACB(∠ACB=90°)绕着顶点B顺时针旋转60°,使得点C旋转到AB边上的一点D,点A旋转到点E的位置.F,G分别是BD,BE上的点,BF=BG,延长CF与DG交于点H.

(1)求证:CF=DG;

(2)求出∠FHG的度数.

17.如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,求证:AC=DF.

18.如图,△ABC和△ADE都是等腰三角形,且∠BAC=90°,∠DAE=90°,B,C,D在同一条直线上.求证:BD=CE.

19.如图,已知点B、E、C、F在同一条直线上,BE=CF,AB∥DE,∠A=∠D.求证:AB=DE.

20.已知△ABC为等腰直角三角形,∠ACB=90°,点P在BC边上(P不与B、C重合)或点P在△ABC内部,连接CP、BP,将CP绕点C逆时针旋转90°,得到线段CE;将BP绕点B顺时针旋转90°,得到线段BD,连接ED交AB于点O.

(1)如图a,当点P在BC边上时,求证:OA=OB;

(2)如图b,当点P在△ABC内部时,

①OA=OB是否成立?请说明理由;

②直接写出∠BPC为多少度时,AB=DE.

21.(1)如图1,在△ABC和△DCE中,AB∥DC,AB=DC,BC=CE,且点B,C,E在一条直线上.求证:∠A=∠D.

(2)如图2,在矩形ABCD中,对角线AC,BD相交于点O,AB=4,∠AOD=120°,求AC的长.

22.(1)如图,AB平分∠CAD,AC=AD,求证:BC=BD;

(2)列方程解应用题

把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,这个班有多少学生?

23.已知:如图,D是AC上一点,AB=DA,DE∥AB,∠B=∠DAE.求证:BC=AE.

24.【问题提出】

学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.

【初步思考】

我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.

【深入探究】

第一种情况:当∠B是直角时,△ABC≌△DEF.

(1)如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据______,可以知道Rt△ABC≌Rt△DEF.

第二种情况:当∠B是钝角时,△ABC≌△DEF.

(2)如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角,求证:△ABC≌△DEF.

第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.

(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,请你用尺规在图③中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹)

(4)∠B还要满足什么条件,就可以使△ABC≌△DEF?请直接写出结论:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,若______,则△ABC≌△DEF.

25.问题背景:

如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.

小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是______;

探索延伸:

如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由;

实际应用:

如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进.1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.

26.如图,在四边形ABCD中,AB=AD,CB=CD,AC与BD相交于O点,OC=OA,若E是CD上任意一点,连接BE交AC于点F,连接DF.

(1)证明:△CBF≌△CDF;

(2)若AC=2,BD=2,求四边形ABCD的周长;

(3)请你添加一个条件,使得∠EFD=∠BAD,并予以证明.

27.如图,已知四边形ABCD是平行四边形,点E、B、D、F在同一直线上,且BE=DF.求证:AE=CF.

28.(1)如图1,正方形ABCD中,点E,F分别在边BC,CD上,∠EAF=45°,延长CD到点G,使DG=BE,连结EF,AG.求证:EF=FG.

(2)如图,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°,若BM=1,CN=3,求MN的长.

29.如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的中点,过点A作AD⊥AB交BE的延长线于点D,CG平分∠ACB交BD于点G,F为AB边上一点,连接CF,且∠ACF=∠CBG.求证:

(1)AF=CG;

(2)CF=2DE.

30.如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC+∠EAD=180°,△ABC不动,△ADE绕点A旋转,连接BE、CD,F为BE的中点,连接AF.

(1)如图①,当∠BAE=90°时,求证:CD=2AF;

(2)当∠BAE≠90°时,(1)的结论是否成立?请结合图②说明理由.

 

第12章 全等三角形

 

一、选择题(共9小题)

1.如图,在△ABC中,∠ABC=45°,AC=8cm,F是高AD和BE的交点,则BF的长是(  )

A.4cm    B.6cm    C.8cm    D.9cm

【解答】解:∵F是高AD和BE的交点,

∴∠ADC=∠ADB=∠AEF=90°,

∴∠CAD+∠AFE=90°,∠DBF+∠BFD=90°,

∵∠AFE=∠BFD,

∴∠CAD=∠FBD,

∵∠ADB=90°,∠ABC=45°,

∴∠BAD=45°=∠ABD,

∴AD=BD,

在△DBF和△DAC中

∴△DBF≌△DAC(ASA),

∴BF=AC=8cm,

故选C.

 

2.如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为(  )

A.(﹣,1)    B.(﹣1,)    C.(,1)    D.(﹣,﹣1)

【解答】解:如图,过点A作AD⊥x轴于D,过点C作CE⊥x轴于E,

∵四边形OABC是正方形,

∴OA=OC,∠AOC=90°,

∴∠COE+∠AOD=90°,

又∵∠OAD+∠AOD=90°,

∴∠OAD=∠COE,

在△AOD和△OCE中,

∴△AOD≌△OCE(AAS),

∴OE=AD=,CE=OD=1,

∵点C在第二象限,

∴点C的坐标为(﹣,1).

故选:A.

 

3.(2014•湖州)在连接A地与B地的线段上有四个不同的点D、G、K、Q,下列四幅图中的实线分别表示某人从A地到B地的不同行进路线(箭头表示行进的方向),则路程最长的行进路线图是(  )

A.    B.C.    D.

【解答】

解:A、延长AC、BE交于S,

∵∠CAB=∠EDB=45°,

∴AS∥ED,则SC∥DE.

同理SE∥CD,

∴四边形SCDE是平行四边形,

∴SE=CD,DE=CS,

即走的路线长是:AC+CD+DE+EB=AC+CS+SE+EB=AS+BS;

B、延长AF、BH交于S1,作FK∥GH与BH的延长线交于点K,

∵∠SAB=∠S1AB=45°,∠SBA=∠S1BA=70°,AB=AB,

∴△SAB≌△S1AB,

∴AS=AS1,BS=BS1,

∵∠FGH=180°﹣70°﹣43°=67°=∠GHB,

∴FG∥KH,

∵FK∥GH,

∴四边形FGHK是平行四边形,

∴FK=GH,FG=KH,

∴AF+FG+GH+HB=AF+FK+KH+HB,

∵FS1+S1K>FK,

∴AS+BS>AF+FK+KH+HB,

即AC+CD+DE+EB>AF+FG+GH+HB,

C、D、同理可证得AI+IK+KM+MB<AS2+BS2<AN+NQ+QP+PB.

综上所述,D选项的所走的线路最长.

故选:D.

 

4.如图,坐标平面上,△ABC与△DEF全等,其中A、B、C的对应顶点分别为D、E、F,且AB=BC=5.若A点的坐标为(﹣3,1),B、C两点在方程式y=﹣3的图形上,D、E两点在y轴上,则F点到y轴的距离为何?(  )

A.2    B.3    C.4    D.5

【解答】解:如图,作AH、CK、FP分别垂直BC、AB、DE于H、K、P.

∴∠DPF=∠AKC=∠CHA=90°.

∵AB=BC,

∴∠BAC=∠BCA.

在△AKC和△CHA中

∴△AKC≌△CHA(ASA),

∴KC=HA.

∵B、C两点在方程式y=﹣3的图形上,且A点的坐标为(﹣3,1),

∴AH=4.

∴KC=4.

∵△ABC≌△DEF,

∴∠BAC=∠EDF,AC=DF.

在△AKC和△DPF中,

∴△AKC≌△DPF(AAS),

∴KC=PF=4.

故选:C.

 

5.平面上有△ACD与△BCE,其中AD与BE相交于P点,如图.若AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,则∠BPD的度数为(  )

A.110°    B.125°    C.130°    D.155°

【解答】解:在△ACD和△BCE中,

∴△ACD≌△BCE(SSS),

∴∠A=∠B,∠BCE=∠ACD,

∴∠BCA=∠ECD,

∵∠ACE=55°,∠BCD=155°,

∴∠BCA+∠ECD=100°,

∴∠BCA=∠ECD=50°,

∵∠ACE=55°,

∴∠ACD=105°

∴∠A+∠D=75°,

∴∠B+∠D=75°,

∵∠BCD=155°,

∴∠BPD=360°﹣75°﹣155°=130°,

故选:C.

 

6.如图,在△ABC和△BDE中,点C在边BD上,边AC交边BE于点F.若AC=BD,AB=ED,BC=BE,则∠ACB等于(  )

A.∠EDB    B.∠BED    C.∠AFB    D.2∠ABF

【解答】解:在△ABC和△DEB中,

∴△ABC≌△DEB (SSS),

∴∠ACB=∠DBE.

∵∠AFB是△BFC的外角,

∴∠ACB+∠DBE=∠AFB,

∠ACB=∠AFB,

故选:C.

 

7.如图,AB=4,射线BM和AB互相垂直,点D是AB上的一个动点,点E在射线BM上,BE=DB,作EF⊥DE并截取EF=DE,连结AF并延长交射线BM于点C.设BE=x,BC=y,则y关于x的函数解析式是(  )

A.y=﹣    B.y=﹣    C.y=﹣    D.y=﹣

【解答】解:作FG⊥BC于G,

∵∠DEB+∠FEC=90°,∠DEB+∠BDE=90°;

∴∠BDE=∠FEG,

在△DBE与△EGF中

∴△DBE≌△EGF,

∴EG=DB,FG=BE=x,

∴EG=DB=2BE=2x,

∴GC=y﹣3x,

∵FG⊥BC,AB⊥BC,

∴FG∥AB,

CG:BC=FG:AB,

即=,

∴y=﹣.

故选:A.

 

8.如图,在四边形ABCD中,AB=AD=6,AB⊥BC,AD⊥CD,∠BAD=60°,点M、N分别在AB、AD边上,若AM:MB=AN:ND=1:2,则tan∠MCN=(  )

A.    B.    C.    D.﹣2

【解答】解:∵AB=AD=6,AM:MB=AN:ND=1:2,

∴AM=AN=2,BM=DN=4,

连接MN,连接AC,

∵AB⊥BC,AD⊥CD,∠BAD=60°

在Rt△ABC与Rt△ADC中,

∴Rt△ABC≌Rt△ADC(HL)

∴∠BAC=∠DAC=∠BAD=30°,MC=NC,

∴BC=AC,

∴AC2=BC2+AB2,即(2BC)2=BC2+AB2,

3BC2=AB2,

∴BC=2,

在Rt△BMC中,CM===2.

∵AN=AM,∠MAN=60°,

∴△MAN是等边三角形,

∴MN=AM=AN=2,

过M点作ME⊥CN于E,设NE=x,则CE=2﹣x,

∴MN2﹣NE2=MC2﹣EC2,即4﹣x2=(2)2﹣(2﹣x)2,

解得:x=,

∴EC=2﹣=,

∴ME==,

∴tan∠MCN==

故选:A.

 

9.如图,点E在正方形ABCD的对角线AC上,且EC=2AE,直角三角形FEG的两直角边EF、EG分别交BC、DC于点M、N.若正方形ABCD的边长为a,则重叠部分四边形EMCN的面积为(  )

A. a2    B. a2    C. a2    D. a2

【解答】解:过E作EP⊥BC于点P,EQ⊥CD于点Q,

∵四边形ABCD是正方形,

∴∠BCD=90°,

又∵∠EPM=∠EQN=90°,

∴∠PEQ=90°,

∴∠PEM+∠MEQ=90°,

∵三角形FEG是直角三角形,

∴∠NEF=∠NEQ+∠MEQ=90°,

∴∠PEM=∠NEQ,

∵AC是∠BCD的角平分线,∠EPC=∠EQC=90°,

∴EP=EQ,四边形PCQE是正方形,

在△EPM和△EQN中,

∴△EPM≌△EQN(ASA)

∴S△EQN=S△EPM,

∴四边形EMCN的面积等于正方形PCQE的面积,

∵正方形ABCD的边长为a,

∴AC=a,

∵EC=2AE,

∴EC=a,

∴EP=PC=a,

∴正方形PCQE的面积=a×a=a2,

∴四边形EMCN的面积=a2,

故选:D.

 

二、解答题(共21小题)

10.如图,已知AB∥DE,AB=DE,AF=CD,∠CEF=90°.

(1)若∠ECF=30°,CF=8,求CE的长;

(2)求证:△ABF≌△DEC;

(3)求证:四边形BCEF是矩形.

【解答】(1)解:∵∠CEF=90°.

∴cos∠ECF=.

∵∠ECF=30°,CF=8.

∴CF=CF•cos30°=8×=4;

(2)证明:∵AB∥DE,

∴∠A=∠D,

∵在△ABF和△DEC中

∴△ABF≌△DEC  (SAS);

(3)证明:由(2)可知:△ABF≌△DEC,

∴BF=CE,∠AFB=∠DCE,

∵∠AFB+∠BFC=180°,∠DCE+∠ECF=180°,

∴∠BFC=∠ECF,

∴BF∥EC,

∴四边形BCEF是平行四边形,

∵∠CEF=90°,

∴四边形BCEF是矩形.

 

11.已知△ABC为等边三角形,D为AB边所在的直线上的动点,连接DC,以DC为边在DC两侧作等边△DCE和等边△DCF(点E在DC的右侧或上侧,点F在DC左侧或下侧),连接AE、BF

(1)如图1,若点D在AB边上,请你通过观察,测量,猜想线段AE、BF和AB有怎样的数量关系?并证明你的结论;

(2)如图2,若点D在AB的延长线上,其他条件不变,线段AE、BF和AB有怎样的数量关系?请直接写出结论(不需要证明);

(3)若点D在AB的反向延长线上,其他条件不变,请在图3中画出图形,探究线段AE、BF和AB有怎样的数量关系,并直接写出结论(不需要证明)

【解答】解:(1)AE+BF=AB,如图1,

∵△ABC和△DCF是等边三角形,

∴CA=CB,CD=CF,∠ACB=∠DCF=60°.

∴∠ACD=∠BCF,

在△ACD和△BCF中

∴△ACD≌△BCF(SAS)

∴AD=BF

同理:△CBD≌△CAE(SAS)

∴BD=AE

∴AE+BF=BD+AD=AB;

(2)BF﹣AE=AB,

如图2,易证△CBF≌△CAD和△CBD≌△CAE,

∴AD=BF,BD=AE,

∴BF﹣AE=AD﹣BD=AB;

(3)AE﹣BF=AB,

如图3,易证△CBF≌△CAD和△CBD≌△CAE,

∴AD=BF,BD=AE,

∴BF﹣AE=AD﹣BD=AB.

 

12.(2013•舟山)如图,△ABC与△DCB中,AC与BD交于点E,且∠A=∠D,AB=DC.

(1)求证:△ABE≌DCE;

(2)当∠AEB=50°,求∠EBC的度数?

【解答】(1)证明:∵在△ABE和△DCE中

∴△ABE≌△DCE(AAS);

(2)解:∵△ABE≌△DCE,

∴BE=EC,

∴∠EBC=∠ECB,

∵∠EBC+∠ECB=∠AEB=50°,

∴∠EBC=25°.

 

13.如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.

(1)求证:△ACD≌△AED;

(2)若∠B=30°,CD=1,求BD的长.

【解答】(1)证明:∵AD平分∠CAB,DE⊥AB,∠C=90°,

∴CD=ED,∠DEA=∠C=90°,

∵在Rt△ACD和Rt△AED中

∴Rt△ACD≌Rt△AED(HL);

(2)解:∵DC=DE=1,DE⊥AB,

∴∠DEB=90°,

∵∠B=30°,

∴BD=2DE=2.

 

14.如图,点D,E在△ABC的边BC上,AB=AC,BD=CE.求证:AD=AE.

【解答】证明:∵AB=AC,

∴∠B=∠C,

在△ABD与△ACE中,

∵,

∴△ABD≌△ACE(SAS),

∴AD=AE.

 

15.已知:如图,AD,BC相交于点O,OA=OD,AB∥CD.

求证:AB=CD.

【解答】证明:∵AB∥CD,

∴∠B=∠C,∠A=∠D,

∵在△AOB和△DOC中,

∴△AOB≌△DOC(AAS),

∴AB=CD.

 

16.如图,把一个直角三角形ACB(∠ACB=90°)绕着顶点B顺时针旋转60°,使得点C旋转到AB边上的一点D,点A旋转到点E的位置.F,G分别是BD,BE上的点,BF=BG,延长CF与DG交于点H.

(1)求证:CF=DG;

(2)求出∠FHG的度数.

【解答】(1)证明:∵在△CBF和△DBG中,

∴△CBF≌△DBG(SAS),

∴CF=DG;

(2)解:∵△CBF≌△DBG,

∴∠BCF=∠BDG,

又∵∠CFB=∠DFH,

又∵△BCF中,∠CBF=180°﹣∠BCF﹣∠CFB,

△DHF中,∠DHF=180°﹣∠BDG﹣∠DFH,

∴∠DHF=∠CBF=60°,

∴∠FHG=180°﹣∠DHF=180°﹣60°=120°.

 

17.如图,点B、F、C、E在一条直线上,FB=CE,AB∥ED,AC∥FD,求证:AC=DF.

【解答】证明:∵FB=CE,

∴FB+FC=CE+FC,

∴BC=EF,

∵AB∥ED,AC∥FD,

∴∠B=∠E,∠ACB=∠DFE,

∵在△ABC和△DEF中,

∴△ABC≌△DEF(ASA),

∴AC=DF.

 

18.如图,△ABC和△ADE都是等腰三角形,且∠BAC=90°,∠DAE=90°,B,C,D在同一条直线上.求证:BD=CE.

【解答】证明:∵△ABC和△ADE都是等腰直角三角形

∴AD=AE,AB=AC,

又∵∠EAC=90°+∠CAD,∠DAB=90°+∠CAD,

∴∠DAB=∠EAC,

∵在△ADB和△AEC中

∴△ADB≌△AEC(SAS),

∴BD=CE.

 

19.如图,已知点B、E、C、F在同一条直线上,BE=CF,AB∥DE,∠A=∠D.求证:AB=DE.

【解答】证明:∵BE=CF,∴BC=EF.

∵AB∥DE,∴∠B=∠DEF.

在△ABC与△DEF中,

∴△ABC≌△DEF(AAS),

∴AB=DE.

 

20.已知△ABC为等腰直角三角形,∠ACB=90°,点P在BC边上(P不与B、C重合)或点P在△ABC内部,连接CP、BP,将CP绕点C逆时针旋转90°,得到线段CE;将BP绕点B顺时针旋转90°,得到线段BD,连接ED交AB于点O.

(1)如图a,当点P在BC边上时,求证:OA=OB;

(2)如图b,当点P在△ABC内部时,

①OA=OB是否成立?请说明理由;

②直接写出∠BPC为多少度时,AB=DE.

【解答】(1)证明:∵△ABC为等腰直角三角形,

∴CA=CB,∠A=∠ABC=45°,

由旋转可知:CP=CE,BP=BD,

∴CA﹣CE=CB﹣CP,

即AE=BP,

∴AE=BD.

又∵∠CBD=90°,∴∠OBD=45°,

在△AEO和△BDO中,

∴△AEO≌△BDO(AAS),

∴OA=OB;

(2)成立,理由如下:

连接AE,则△AEC≌△BCP,

∴AE=BP,∠CAE=∠BPC,

∵BP=BD,

∴BD=AE,

∵∠OAE=45°+∠CAE,∠OBD=90°﹣∠OBP=90°﹣(45°﹣∠BPC)=45°+∠PBC,

∴∠OAE=∠OBD,

在△AEO和△BDO中,

∴△AEO≌△BDO(AAS),

∴OA=OB,

②当∠BPC=135°时,AB=DE.理由如下:

解法一:

当AB=DE时,由①知OA=OB,∴OA=OB=OE=OD.

设∠PCB=α,由旋转可知,∠ACE=α.

连接OC,则OC=OA=OB,∴OC=OE,

∴∠DEC=∠OCE=45°+α.

设∠PBC=β,则∠ABP=45°﹣β,∠OBD=90°﹣∠ABP=45°+β.

∵OB=OD,∴∠D=∠OBD=45°+β.

在四边形BCED中,∠DEC+∠D+∠DBC+∠BCE=360°,

即:(45°+α)+(45°+β)+(90°+β)+(90°+α)=360°,

解得:α+β=45°,

∴∠BPC=180°﹣(α+β)=135°.

解法二(本溪赵老师提供,更为简洁):

当AB=DE时,四边形AEBD为矩形

则∠DBE=90°=∠DBP,

∴点P落在线段BE上.

∵△ECP为等腰直角三角形,

∴∠EPC=45°,

∴∠BPC=180°﹣∠EPC=135°.

 

21.(1)如图1,在△ABC和△DCE中,AB∥DC,AB=DC,BC=CE,且点B,C,E在一条直线上.求证:∠A=∠D.

(2)如图2,在矩形ABCD中,对角线AC,BD相交于点O,AB=4,∠AOD=120°,求AC的长.

【解答】(1)证明:∵AB∥DC,

∴∠B=∠DCE,

在△ABC和△DCE中,

∴△ABC≌△DCE(SAS),

∴∠A=∠D;

(2)解:∵四边形ABCD是矩形,

∴AO=BO=CO=DO,

∵∠AOD=120°,

∴∠AOB=60°,

∴△AOB是等边三角形,

∴AO=AB=4,

∴AC=2AO=8.

 

22.(1)如图,AB平分∠CAD,AC=AD,求证:BC=BD;

(2)列方程解应用题

把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本,这个班有多少学生?

【解答】(1)证明:∵AB平分∠CAD,

∴∠CAB=∠DAB,

在△ABC和△ABD中

∴△ABC≌△ABD(SAS),

∴BC=BD.

(2)解:设这个班有x名学生,根据题意得:3x+20=4x﹣25,

解得:x=45,

答:这个班有45名学生.

 

23.已知:如图,D是AC上一点,AB=DA,DE∥AB,∠B=∠DAE.求证:BC=AE.

【解答】证明:∵DE∥AB,

∴∠CAB=∠ADE,

∵在△ABC和△DAE中,

∴△ABC≌△DAE(ASA),

∴BC=AE.

 

24.【问题提出】

学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边和其中一边的对角对应相等”的情形进行研究.

【初步思考】

我们不妨将问题用符号语言表示为:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.

【深入探究】

第一种情况:当∠B是直角时,△ABC≌△DEF.

(1)如图①,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E=90°,根据 HL ,可以知道Rt△ABC≌Rt△DEF.

第二种情况:当∠B是钝角时,△ABC≌△DEF.

(2)如图②,在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角,求证:△ABC≌△DEF.

第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.

(3)在△ABC和△DEF,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,请你用尺规在图③中作出△DEF,使△DEF和△ABC不全等.(不写作法,保留作图痕迹)

(4)∠B还要满足什么条件,就可以使△ABC≌△DEF?请直接写出结论:在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角,若 ∠B≥∠A ,则△ABC≌△DEF.

【解答】(1)解:HL;

(2)证明:如图,过点C作CG⊥AB交AB的延长线于G,过点F作FH⊥DE交DE的延长线于H,

∵∠ABC=∠DEF,且∠ABC、∠DEF都是钝角,

∴180°﹣∠ABC=180°﹣∠DEF,

即∠CBG=∠FEH,

在△CBG和△FEH中,

∴△CBG≌△FEH(AAS),

∴CG=FH,

在Rt△ACG和Rt△DFH中,

∴Rt△ACG≌Rt△DFH(HL),

∴∠A=∠D,

在△ABC和△DEF中,

∴△ABC≌△DEF(AAS);

(3)解:如图,△DEF和△ABC不全等;

(4)解:若∠B≥∠A,则△ABC≌△DEF.

故答案为:(1)HL;(4)∠B≥∠A.

 

25.(2014•德州)问题背景:

如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.

小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是 EF=BE+DF ;

探索延伸:

如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由;

实际应用:

如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/小时的速度前进,舰艇乙沿北偏东50°的方向以80海里/小时的速度前进.1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.

【解答】解:问题背景:EF=BE+DF;

探索延伸:EF=BE+DF仍然成立.

证明如下:如图,延长FD到G,使DG=BE,连接AG,

∵∠B+∠ADC=180°,∠ADC+∠ADG=180°,

∴∠B=∠ADG,

在△ABE和△ADG中,

∴△ABE≌△ADG(SAS),

∴AE=AG,∠BAE=∠DAG,

∵∠EAF=∠BAD,

∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,

∴∠EAF=∠GAF,

在△AEF和△GAF中,

∴△AEF≌△GAF(SAS),

∴EF=FG,

∵FG=DG+DF=BE+DF,

∴EF=BE+DF;

实际应用:如图,连接EF,延长AE、BF相交于点C,

∵∠AOB=30°+90°+(90°﹣70°)=140°,

∠EOF=70°,

∴∠EOF=∠AOB,

又∵OA=OB,

∠OAC+∠OBC=(90°﹣30°)+(70°+50°)=180°,

∴符合探索延伸中的条件,

∴结论EF=AE+BF成立,

即EF=1.5×(60+80)=210海里.

答:此时两舰艇之间的距离是210海里.

 

26.如图,在四边形ABCD中,AB=AD,CB=CD,AC与BD相交于O点,OC=OA,若E是CD上任意一点,连接BE交AC于点F,连接DF.

(1)证明:△CBF≌△CDF;

(2)若AC=2,BD=2,求四边形ABCD的周长;

(3)请你添加一个条件,使得∠EFD=∠BAD,并予以证明.

【解答】(1)证明:在△ABC和△ADC中,

∴△ABC≌△ADC(SSS),

∴∠BCA=∠DCA,

在△CBF和△CDF中,

∴△CBF≌△CDF(SAS),

(2)解:∵△ABC≌△ADC,

∴△ABC和△ADC是轴对称图形,

∴OB=OD,BD⊥AC,

∵OA=OC,

∴四边形ABCD是菱形,

∴AB=BC=CD=DA,

∵AC=2,BD=2,

∴OA=,OB=1,

∴AB===2,

∴四边形ABCD的周长=4AB=4×2=8.

(3)当EB⊥CD时,即E为过B且和CD垂直时垂线的垂足,∠EFD=∠BCD,

理由:∵四边形ABCD为菱形,

∴BC=CD,∠BCF=∠DCF,∠BCD=∠BAD,

∵△BCF≌△DCF,

∴∠CBF=∠CDF,

∵BE⊥CD,

∴∠BEC=∠DEF=90°,

∴∠BCD+∠CBF=90°,∠EFD+∠CDF=90°,

∴∠EFD=∠BAD.

 

27.如图,已知四边形ABCD是平行四边形,点E、B、D、F在同一直线上,且BE=DF.求证:AE=CF.

【解答】证明:∵四边形ABCD是平行四边形,

∴AB=CD,AB∥CD,

∴∠ABD=∠CDB,

∴180°﹣∠ABD=180°﹣∠CDB,

即∠ABE=∠CDF,

在△ABE和△CDF中,

∴△ABE≌△CDF(SAS),

∴AE=CF.

 

28.(1)如图1,正方形ABCD中,点E,F分别在边BC,CD上,∠EAF=45°,延长CD到点G,使DG=BE,连结EF,AG.求证:EF=FG.

(2)如图,等腰直角三角形ABC中,∠BAC=90°,AB=AC,点M,N在边BC上,且∠MAN=45°,若BM=1,CN=3,求MN的长.

【解答】(1)证明:在正方形ABCD中,

∠ABE=∠ADG,AD=AB,

在△ABE和△ADG中,

∴△ABE≌△ADG(SAS),

∴∠BAE=∠DAG,AE=AG,

∴∠EAG=90°,

在△FAE和△GAF中,

∴△FAE≌△GAF(SAS),

∴EF=FG;

(2)解:如图,过点C作CE⊥BC,垂足为点C,截取CE,使CE=BM.连接AE、EN.

∵AB=AC,∠BAC=90°,∴∠B=∠ACB=45°.

∵CE⊥BC,∴∠ACE=∠B=45°.

在△ABM和△ACE中,

∴△ABM≌△ACE(SAS).

∴AM=AE,∠BAM=∠CAE.

∵∠BAC=90°,∠MAN=45°,∴∠BAM+∠CAN=45°.

于是,由∠BAM=∠CAE,得∠MAN=∠EAN=45°.

在△MAN和△EAN中,

∴△MAN≌△EAN(SAS).

∴MN=EN.

在Rt△ENC中,由勾股定理,得EN2=EC2+NC2.

∴MN2=BM2+NC2.

∵BM=1,CN=3,

∴MN2=12+32,

∴MN=

 

29.如图,在△ABC中,∠ACB=90°,AC=BC,E为AC边的中点,过点A作AD⊥AB交BE的延长线于点D,CG平分∠ACB交BD于点G,F为AB边上一点,连接CF,且∠ACF=∠CBG.求证:

(1)AF=CG;

(2)CF=2DE.

【解答】证明:(1)∵∠ACB=90°,CG平分∠ACB,

∴∠ACG=∠BCG=45°,

又∵∠ACB=90°,AC=BC,

∴∠CAF=∠CBF=45°,

∴∠CAF=∠BCG,

在△AFC与△CGB中,

∴△AFC≌△CBG(ASA),

∴AF=CG;

(2)延长CG交AB于H,

∵CG平分∠ACB,AC=BC,

∴CH⊥AB,CH平分AB,

∵AD⊥AB,

∴AD∥CG,

∴∠D=∠EGC,

在△ADE与△CGE中,

∴△ADE≌△CGE(AAS),

∴DE=GE,

即DG=2DE,

∵AD∥CG,CH平分AB,

∴DG=BG,

∵△AFC≌△CBG,

∴CF=BG,

∴CF=2DE.

 

30.如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC+∠EAD=180°,△ABC不动,△ADE绕点A旋转,连接BE、CD,F为BE的中点,连接AF.

(1)如图①,当∠BAE=90°时,求证:CD=2AF;

(2)当∠BAE≠90°时,(1)的结论是否成立?请结合图②说明理由.

【解答】(1)证明:如图①,

∵∠BAC+∠EAD=180°,∠BAE=90°,

∴∠DAC=90°,

在△ABE与△ACD中

∴△ABE≌△ACD(SAS),

∴CD=BE,

∵在Rt△ABE中,F为BE的中点,

∴BE=2AF,

∴CD=2AF.

(2)成立,

证明:如图②,延长EA交BC于G,在AG上截取AH=AD,

∵∠BAC+∠EAD=180°,

∴∠EAB+∠DAC=180°,

∵∠EAB+∠BAH=180°,

∴∠DAC=∠BAH,

在△ABH与△ACD中,

∴△ABH≌△ACD(SAS)

∴BH=DC,

∵AD=AE,AH=AD,

∴AE=AH,

∵EF=FB,

∴BH=2AF,

∴CD=2AF.

 

文档

人教版八年级数学上:第12章《全等三角形》单元测试(含答案)(含答案...

第12章全等三角形一、选择题1.如图,在△ABC中,∠ABC=45°,AC=8cm,F是高AD和BE的交点,则BF的长是()A.4cmB.6cmC.8cmD.9cm2.如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,),则点C的坐标为()A.(﹣,1)B.(﹣1,)C.(,1)D.(﹣,﹣1)3.在连接A地与B地的线段上有四个不同的点D、G、K、Q,下列四幅图中的实线分别表示某人从A地到B地的不同行进路线(箭头表示行进的方向),则路程最长的行进路线图是()A.B.C.D.
推荐度:
  • 热门焦点

最新推荐

猜你喜欢

热门推荐

专题
Top